Czech J. Anim. Sci., 2007, 52(5):143-148 | DOI: 10.17221/2232-CJAS

Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues

S. Křížková1, O. Zítka1,2, V. Adam1,3, M. Beklová4, A. Horna5, Z. Svobodová6,7, B. Sures8, L. Trnková9, L. Zeman3, R. Kizek1
1 Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Brno, Czech Republic
2 Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
3 Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Brno, Czech Republic
4 Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
5 Department of Food Engineering and Chemistry, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic
6 Institute of Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
7 Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
8 Universität Duisburg-Essen, Angewande Zoologie/Hydrobiologie, Essen, Germany
9 Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic

In the present paper, we report on the use of adsorptive transfer stripping technique in connection with chronopotentiometric stripping analysis for metallothionein determination and of differential pulse anodic stripping voltammetry for lead detection in tissues of wild perch (Perca fluviatilis, n = 6) from the Svratka River in Brno, Czech Republic. Primarily, we determined the content of MT in tissues (muscles, gonads, liver and spleen) of perch. We measured the highest content of MT in spleen and liver (100-350 ng MT per gram of fresh weight). We assume that the content of MT determined in perch tissues is probably related with the age of the fish and, therefore, with their exposition to heavy metals naturally occurring in the Svratka River. We detected a lead concentration in the tissues of one perch. It clearly follows from the results that the content of MT well correlates with the concentration of lead.

Keywords: electrochemical detection; catalytic signal; peak H; heavy metals; fish; environmental pollution

Published: May 31, 2007  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Křížková S, Zítka O, Adam V, Beklová M, Horna A, Svobodová Z, et al.. Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues. Czech J. Anim. Sci. 2007;52(5):143-148. doi: 10.17221/2232-CJAS.
Download citation

References

  1. Atli G., Canli M. (2003): Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bull. Environ. Contam. Toxicol., 70, 619-627. Go to original source... Go to PubMed...
  2. Dabrio M., Rodriguez A.R., Bordin G., Bebianno M.J., De Ley M., Sestakova I., Vasak M., Nordberg M. (2002): Recent developments in quantification methods for metallothionein. J. Inorg. Biochem., 88, 123-134. Go to original source... Go to PubMed...
  3. Doki Y., Monden M. (2004): Can metallothionein be a useful molecular marker for selecting hepatocellular carcinoma patients for platinum-based chemotherapy? J. Gastroenterol., 39, 1228-1229. Go to original source... Go to PubMed...
  4. Erk M., Ivankovic D., Raspor B., Pavicic J. (2002): Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta, 57, 1211-1218. Go to original source... Go to PubMed...
  5. Gillis P.L., Dixon D.G., Borgmann U., Reynoldson T.B. (2004): Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ. Toxicol. Chem., 23, 76-85. Go to original source... Go to PubMed...
  6. Húska D., Zítka O., Adam V., Beklová M., Křížková S., Zeman L., Horna A., Havel L., Zehnálek J., Kizek R. (2007): A sensor for investigating the interaction between biologically important heavy metals and glutathione. Czech J. Anim. Sci., 52, 37-43 Go to original source...
  7. Ivankovic D., Pavicic J., Raspor B., Falnoga I., TusekZnidaric T. (2003): Comparison of two SH-based methods for estimation of metallothionein level in the digestive gland of naturally occurring mussels, Mytilus galloprovincialis. Int. J. Environ. Anal. Chem., 83, 219-231. Go to original source...
  8. Ivankovic D., Pavicic J., Erk M., Filipovic-Marijic V., Raspor B. (2005): Evaluation of the Mytilus galloprovincialis Lam. digestive gland metallothionein as a biomarker in a long-term field study: Seasonal and spatial variability. Mar. Pollut. Bull., 50, 1303-1313. Go to original source... Go to PubMed...
  9. Kameo S., Nakai K., Kurokawa N., Kanehisa T., Naganuma A., Satoh H. (2005): Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapour with HPLC/ICP-MS. Anal. Bioanal. Chem., 381, 1514-1519. Go to original source... Go to PubMed...
  10. Kizek R., Trnková L., Paleček E. (2001): Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal. Chem., 73, 4801-4807. Go to original source... Go to PubMed...
  11. Kizek R., Vacek J., Trnková L., Jelen F. (2004): Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. Bioelectrochemistry, 63, 19-24. Go to original source... Go to PubMed...
  12. Margoshes M., Vallee B.L.A. (1957): A cadmium protein from equine kidney cortex. J. Am. Chem. Soc., 79, 4813-4814. Go to original source...
  13. Nordberg G.F. (2004): Cadmium and health in the 21 st Century - historical remarks and trends for the future. Biometals, 17, 485-489. Go to original source... Go to PubMed...
  14. Nordberg M., Nordberg G.F. (2000): Toxicological aspects of metallothionein. Cell. Mol. Biol., 46, 451-463.
  15. Nordberg G., Jin T., Leffler P., Svensson M., Zhou T., Nordberg M. (2000): Metallothioneins and diseases with special reference to cadmium poisoning. Analusis, 28, 396-400. Go to original source...
  16. Palmiter R.D., Findley S.D., Whitmore T.E., Durnam D.M. (1992): MT-III, a brain specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. U.S.A., 89, 6333-6337. Go to original source... Go to PubMed...
  17. Petrlová J., Potěšil D., Mikelová R., Blaštík O., Adam V., Trnková L., Jelen F., Průša R., Kukačka J., Kizek R. (2006): Attomole voltammetric determination of metallothionein. Electrochim. Acta, 51, 5112-5119. Go to original source...
  18. Průša R., Kizek R., Trnková L., Vacek J., Zehnálek J. (2004): Study of relationship between metallothionein and heavy metals by CPSA method. Clin. Chem., 50, A28-29.
  19. Průša R., Blaštík O., Potěšil D., Trnková L., Zehnálek J., Adam V., Petrlová J., Jelen F., Kizek R. (2005): Analytic method for determination of metallothioneins as tumor markers. Clin. Chem., 51, A56-56.
  20. Raspor B., Dragun Z., Erk M., Ivankovic D., Pavicic J. (2004): Is the digestive gland of Mytilus galloprovincialis a tissue of choice for estimating cadmium exposure by means of metallothioneins? Sci. Total Environ., 333, 99-108. Go to original source... Go to PubMed...
  21. Scortegagna M., Chikhale E., Hanbauer I. (1998): Lead exposure increases oxidative stress in serum deprived E14 mesencephalic cultures. Role of metallothionein and glutathione. Restor. Neurol. Neurosci., 12, 95-101. Go to PubMed...
  22. Šestaková I., Navrátil T. (2005): Voltammetric methods in metallothionein research. Bioinorg. Chem. Appl., 3, 43-53. Go to original source... Go to PubMed...
  23. Siddall R., Sures B. (1998): Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and immature worms in chub (Leuciscus cephalus). Parasitol. Res., 84, 573-577. Go to original source... Go to PubMed...
  24. Strouhal M., Kizek R., Vacek J., Trnkova L., Nemec M. (2003): Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry, 60, 29-36. Go to original source... Go to PubMed...
  25. Sures B., Siddall R. (1999): Pomphorhynchus laevis: The intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp. Parasitol., 93, 66-72. Go to original source... Go to PubMed...
  26. Sures B., Siddall R. (2001): Comparison between lead accumulation of Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) and in the body cavity of goldfish (Carassius auratus auratus). Int. J. Parasit., 31, 669-673. Go to original source... Go to PubMed...
  27. Sures B., Taraschewski H., Rokicki J. (1997): Lead and cadmium content of two cestodes, Monobothrium wageneri and Bothriocephalus scorpii, and their fish hosts. Parasitol. Res., 83, 618-623. Go to original source... Go to PubMed...
  28. Sures B., Jurges G., Taraschewski H. (2000): Accumulation and distribution of lead in the archiacanthocephalan Moniliformis moniliformis from experimentally infected rats. Parasitology, 121, 427-433. Go to original source... Go to PubMed...
  29. Sures B., Dezfuli B.S., Krug H.F. (2003): The intestinal parasite Pomphorhynchus laevis (Acanthocephala) interferes with the uptake and accumulation of lead (Pb-210) in its fish host chub (Leuciscus cephalus). Int. J. Parasit., 33, 1617-1622. Go to original source... Go to PubMed...
  30. Svobodová Z., Žlábek V., Čelechovská O., Randák T., Machová J., Kolárová J., Janoušková D. (2002): Content of metals in tissues of marketable common carp and in bottom sediments of selected ponds of South and West Bohemia. Czech J. Anim. Sci., 47, 339-350.
  31. Svobodová Z., Čelechovská O., Kolárová J., Randák T., Žlábek V. (2004): Assessment of metal contamination in the upper reaches of the Ticha Orlice River. Czech J. Anim. Sci., 49, 458-464. Go to original source...
  32. Swierzcek S., Abuknesha R.A., Chivers I., Baranovska I., Cunningham P., Price R.G. (2004): Enzyme-immunoassay for the determination of metallothionein in human urine: application to environmental monitoring. Biomarkers, 9, 331-340. Go to original source... Go to PubMed...
  33. Theocharis S.E., Margeli A.P., Klijanienko J.T., Kouraklis G.P. (2004): Metallothionein expression in human neoplasia. Histopathology, 45, 103-118. Go to original source... Go to PubMed...
  34. Trnková L., Kizek R., Vacek J. (2002): Catalytic signal of rabbit liver metallothionein on a mercury electrode: a combination of derivative chronopotentiometry with adsorptive transfer stripping. Bioelectrochemistry, 56, 57-61. Go to original source... Go to PubMed...
  35. Vacek J., Petrek J., Kizek R., Havel L., Klejdus B., Trnková L., Jelen F. (2004): Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry, 63, 347-351. Go to original source... Go to PubMed...
  36. Zimmermann S., Sures B., Taraschewski H. (1999): Experimental studies on lead accumulation in the eelspecific endoparasites Anguillicola crassus (Nematoda) and Paratenuisentis ambiguus (Acanthocephala) as compared with their host, Anguilla anguilla. Arch. Environ. Contam. Toxicol., 37, 190-195. Go to original source... Go to PubMed...
  37. Žlábek V., Svobodová Z., Randák T., Valentová O. (2005): Mercury content in the muscle of fish from the Elbe River and its tributaries. Czech J. Anim. Sci., 50, 528-534. Go to original source...
  38. Zorita I., Strogyloudi E., Buxens A., Mazon L.I., Papathanassiou E., Soto M., Cajaraville M.P. (2005): Application of two SH-based methods for metallothionein determination in mussels and intercalibration of the spectrophotometric method: laboratory and field studies in the Mediterranean Sea. Biomarkers, 10, 342-359. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.