Czech J. Anim. Sci., 2018, 63(9):371-378 | DOI: 10.17221/34/2018-CJAS

Genomic structure and expression of the porcine ACTC1 geneOriginal Paper

Antonín Stratil*,1, Pavel Horák1, Michaela Nesvadbová2, Mario Van Poucke3, Věra Dvořáková1,4, Roman Stupka4, Jaroslav Čítek4, Kateřina Zadinová4, Luc J. Peelman3, Aleš Knoll2,5
1 Institute of Animal Physiology and Genetics CAS, v.v.i. Liběchov, Liběchov, Czech Republic
2 Department of Morphology, Physiology and Animal Genetics, Mendel University in Brno, Brno, Czech Republic
3 Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
4 Department of Animal Husbandry, Czech University of Life Sciences Prague, Prague, Czech Republic
5 CEITEC Mendel University in Brno, Brno, Czech Republic

A partial cDNA (~1200 bp) of the porcine ACTC1 gene was identified in the subtracted foetal hind limb muscle cDNA library (44 days of gestation; using m. biceps femoris cDNA as the driver). Using specific polymerase chain reaction (PCR) primers, a bacterial artificial chromosome (BAC) clone containing the genomic ACTC1 gene was identified and the gene was sequenced. Specific PCR primers designed from the BAC and cDNA sequences were used for amplification and comparative sequencing of ACTC1 of Pietrain and Meishan pigs. The gene is approximately 5.4 kb in length, is composed of 7 exons, and has a coding sequence containing 1134 bp. The gene was mapped using the INRA-Minnesota porcine radiation hybrid (IMpRH) panel to chromosome 1, with SW65 as the closest marker (41 cR; LOD = 7.73). Differences were observed in tissue-specific expression of ACTC1 that was studied by transcription profiling in 28 porcine tissues. Developmental differences in muscle and heart were analysed by real-time quantitative PCR (RT-qPCR). Two single nucleotide polymorphisms (SNPs) were found in intron 1. One adequately informative SNP (FM212567.1:g.901C>G) was genotyped by PCR-restriction fragment length polymorphism, and allele frequencies in eight pig breeds were calculated.

Keywords: actin, alpha; cardiac muscle 1; mRNA; pig; transcription profiling; RT-qPCR

Published: September 30, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Stratil A, Horák P, Nesvadbová M, Van Poucke M, Dvořáková V, Stupka R, et al.. Genomic structure and expression of the porcine ACTC1 gene. Czech J. Anim. Sci. 2018;63(9):371-378. doi: 10.17221/34/2018-CJAS.
Download citation

References

  1. Carrier L., Boheler K.R., Chassagne C., de la Bastie D., Wisnewski C., Lakatta E.G., Schwartz K. (1992): Expression of the sarcomeric actin isogenes in the rat heart with development and senescence. Circulation Research, 70, 999-1005. Go to original source... Go to PubMed...
  2. Chalupova P., Dvorakova V., Knoll A., Stratil A., Bartenschlager H., Stupka R., Citek J., Sprysl M., Palanova A., Horak P., Geldermann H. (2014): Polymorphism, linkage mapping, and association analysis with carcass traits of four porcine candidate genes selected from geneexpression profiles of Czech Large White and Wild Boar muscles. Czech Journal of Animal Science, 59, 116-127. Go to original source...
  3. Erkens T., Van Poucke M., Vandesompele J., Goossens K., Van Zeveren A., Peelman L.J. (2006): Development of a new set of reference genes for normalization of realtime RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnology, 6: 41. Go to original source... Go to PubMed...
  4. Freeman T.C., Ivens A., Baillie J.K., Beraldi D., Barnett M.W., Dorward D., Downing A., Fairbairn L., Kapetanovic R., Raza S., Tomoiu A., Alberio R.,Wu C., Su A.I., Summers K.M., Tuggle C.K., Archibald A.L., Hume D.A. (2012): A gene expression atlas of the domestic pig. BMC Biology, 10: 90. Go to original source... Go to PubMed...
  5. Groenen M.A.M., Archibald A.L., Uenishi H., Tuggle C.K., Takeuchi Y., Rothschild M.F., Rogel-Gaillard C., Park C., Milan D., Megens H.-J., Li S., Larkin D.M., Kim H., Frantz L.A.F., Caccamo M., et al. (2012): Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393-398. Go to original source... Go to PubMed...
  6. Gunning P., Ponte P., Blau H., Kedes L. (1983): α-Skeletal and α-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Molecular and Cellular Biology, 3, 1985-1995. Go to original source... Go to PubMed...
  7. Hawken R.J., Murtaugh J., Flickinger J.H., Yerle M., Robic A., Milan D., Gellin J., Beattie C.W., Schook L.B., Alexander L.J. (1999): A first-generation porcine whole-genome radiation hybrid map. Mammalian Genome, 10, 824-830. Go to original source... Go to PubMed...
  8. Horak P., Stratil A., Knoll A., Bilek K., Van Poucke M., Peelman L.J. (2008): The porcine ACTC1 gene - structure, polymorphism, mapping and expression. In: Proc. 31st Internat. Conference on Animal Genetics, Amsterdam, the Netherlands, Abstract No. 2203.
  9. Ilkovski B., Clement S., Sewry C., North K.N., Cooper S.T. (2005): Defining α-skeletal and α-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disorders, 15, 829-835. Go to original source... Go to PubMed...
  10. McHugh K.M., Crawford K., Lessard J.L. (1991): A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Developmental Biology, 148, 442-458. Go to original source... Go to PubMed...
  11. Murani E., Muraniova M., Ponsuksili S., Schellander K., Wimmers K. (2007): Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC Developmental Biology, 7: 109. Go to original source... Go to PubMed...
  12. Rogel-Gaillard C., Bourgeaux N., Billault A., Vaiman M., Chardon P. (1999): Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. Cytogenetics and Cell Genetics, 85, 205-211. Go to original source... Go to PubMed...
  13. Stratil A., Knoll A., Horak P., Bilek K., Bechynova R., Bartenschlager H., Van Poucke M., Peelman L.J., Svobodova K., Geldermann H. (2008): Mapping of the porcine FBN2, YWHAQ, CNN3, DCN, POSTN, SPARC, RBM39 and GNAS genes, expressed in foetal skeletal muscles. Animal Genetics, 39, 204-205. Go to original source... Go to PubMed...
  14. Svobodova K., Horak P., Stratil A., Bartenschlager H., Van Poucke M., Chalupova P., Dvorakova V., Knorr C., Stupka R., Citek J., Sprysl M., Palanova A., Peelman L.J., Geldermann H., Knoll A. (2015): Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression. Molecular Biology Reports, 42, 1257-1264. Go to original source... Go to PubMed...
  15. Te Pas M.F.W., de Wit A.A.W., Priem J., Cagnazzo M., Davoli R., Russo V., Pool M.H. (2005): Transcriptome expression profiles in prenatal pigs in relation to myogenesis. Journal of Muscle Research and Cell Motility, 26, 157-165. Go to original source... Go to PubMed...
  16. Van Poucke M., Melkebeek V., Erkens T., Van Zeveren A., Cox E., Peelman L.J. (2009): Molecular cloning and characterization of the porcine prostaglandin transporter (SLCO2A1): evaluation of its role in F4 mediated neonatal diarrhoea. BMC Genetics, 10: 64. Go to original source... Go to PubMed...
  17. Wimmers K., Murani E., Te Pas M.F.W., Chang K.C., Davoli R., Merks J.W.M., Henne H., Muraniova M., da Costa N., Harlizius B., Schellander K., Boll I., Braglia S., de Wit A.A.C., Cagnazzo M., Fontanesi L., Prins D., Ponsuksili S. (2007): Association of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Animal Genetics, 38, 474-484. Go to original source... Go to PubMed...
  18. Yerle M., Pinton P., Robic A., Alfonso A., Palvadeau Y., Delcros C., Hawken R., Alexander L., Beattie C., Schook L., Milan D., Gellin J. (1998): Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenetics and Cell Genetics, 82, 182-188. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.