Czech J. Anim. Sci., 2013, 58(2):65-70 | DOI: 10.17221/6616-CJAS

Genetic variation at RYR1, IGF2, FUT1, MUC13, and KPL2 mutations affecting production traits in Chinese commercial pig breedsOriginal Paper

G.R. Ruan*,1,2, Y.Y. Xing*,1, Y. Fan1, R.M. Qiao1, X.F. He1, B. Yang1, N.S. Ding1, J. Ren1, L.S. Huang1, S.J. Xiao1
1 Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, P.R. China
2 Fujian Vocational College of Agriculture, Fuzhou, P.R. China

The identification of causative mutations affecting economically important traits has benefited the worldwide pig industry. We investigated the genetic variation at five loci including RYR1, IGF2, FUT1, MUC13, and KPL2 affecting traits related to production, reproduction, and disease resistance in a sample of 8009 pigs representing 3 commercial breeds (Duroc, Landrace, and Large White) from 28 farms in China. We found that all breeds, especially Duroc pigs, have high frequencies of favourable alleles for lean production and stress resistance at the IGF2 and RYR1 loci. However, all breeds have low frequencies of the diarrhea-resistant allele of FUT1, indicating that multigenerational selection is required for E. coli F18+ resistant pigs. No linkage disequilibrium was found between the RYR1 and FUT1 loci on pig chromosome 6, supporting the possibility of combined selection for both F18 and stress-resistant pigs. Relatively high frequencies (> 0.5) of the MUC13 allele conferring resistance to E. coli F4ac were found in all three breeds with the highest frequency in Duroc pigs, suggesting that the breeders can establish F4ac diarrhea-resistant lines in a few generations. No defective allele at the KPL2 locus causing immotile short-tail sperms was found in Large White pigs of American, Canadian, Danish, English, and French origin, supporting the conclusion that the KPL2 defective allele is present exclusively in Finnish Large White pigs. These results provide useful information for pig breeding schemes in China.

Keywords: China; commercial pig breed; genetic variation; economically important markers

Published: February 28, 2013  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ruan GR, Xing YY, Fan Y, Qiao RM, He XF, Yang B, et al.. Genetic variation at RYR1, IGF2, FUT1, MUC13, and KPL2 mutations affecting production traits in Chinese commercial pig breeds. Czech J. Anim. Sci. 2013;58(2):65-70. doi: 10.17221/6616-CJAS.
Download citation

References

  1. Coddens A., Verdonck F., Mulinge M., Goyvaerts E., Miry C., Goddeeris B., Duchateau L., Cox E. (2008): The possibility of positive selection for both F18 (+) Escherichia coli and stress resistant pigs opens new perspectives for pig breeding. Veterinary Microbiology, 126, 210-215. Go to original source... Go to PubMed...
  2. Estellé J., Mercadé A., Noguera J.L., Pérez-Enciso M., Ovilo C., Sánchez A., Folch J.M. (2005): Effect of the porcine IGF2-intron3-G3072A substitution in an outbred Large White population and in an Iberian × Landrace cross. Journal of Animal Science, 83, 2723-2728. Go to original source... Go to PubMed...
  3. Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V.K., Weiler J.E., O'Brien P.J., MacLennan D.H. (1991): Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 253, 448-451. Go to original source... Go to PubMed...
  4. Gregory N.G., Grandin T. (2007): Animal Welfare and Meat Production. 2nd Ed. Oxford University Press, UK. Go to original source...
  5. Jeon J.T., Carlborg O., Törnsten A., Giuffra E., Amarger V., Chardon P., Andersson-Eklund L., Andersson K., Hansson I., Lundström K., Andersson L. (1999): A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 21, 157-158. Go to original source... Go to PubMed...
  6. Jungerius B.J., van Laere A.S., Te Pas M.F., van Oost B.A., Andersson L., Groenen M.A. (2004): The IGF2-intron3G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan × European white pig intercross. Genetic Research, 84, 95-101. Go to original source... Go to PubMed...
  7. Meijerink E., Fries R., Vögeli P., Masabanda J., Wigger G., Stricker C., Neuenschwander S., Bertschinger H.U., Stranzinger G. (1997): Two α(1,2) fucosyltransferase genes on porcine Chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mammalian Genome, 8, 736-741. Go to original source... Go to PubMed...
  8. Meijerink E., Neuenschwander S., Fries R., Dinter A., Bertschinger H.U., Stranzinger G., Vögeli P. (2000): A DNA polymorphism influencing α(1,2) fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics, 52, 129-136. Go to original source... Go to PubMed...
  9. Nezer C., Moreau L., Brouwers B., Coppieters W., Detilleux J., Hanset R., Karim L., Kvasz A., Leroy P., Georges M. (1999): An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics, 21, 155-156. Go to original source... Go to PubMed...
  10. Oczkowicz M., Tyra M., Walinowicz K., Rózycki M., Rejduch B. (2009): Known mutation (A3072G) in intron 3 of the IGF2 gene is associated with growth and carcass composition in Polish pig breeds. Journal of Applied Genetics, 50, 257-259. Go to original source... Go to PubMed...
  11. Ojeda A., Huang L.S., Ren J., Angiolillo A., Cho I.C., Soto H., Lemús-Flores C., Makuza S.M., Folch J.M., Pérez-Enciso M. (2008): Selection in the making: a worldwide survey of haplotypic diversity around a causative mutation in porcine IGF2. Genetics, 178, 1639-1652. Go to original source... Go to PubMed...
  12. Raymond M., Rousset F. (1995): GENEPOP (Version 3.3): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249. Go to original source...
  13. Ren J., Yan X., Ai H., Zhang Z., Huang X., Ouyang J., Yang M., Yang H., Han P., Zeng W., Chen Y., Guo Y., Xiao S., Ding N., Huang L. (2012): Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS ONE, 7, e44573. Go to original source... Go to PubMed...
  14. Sironen A., Thomsen B., Andersson M., Ahola V., Vilkki J. (2006): An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig. Proceedings of the National Academy of Sciences of the United States of America, 103, 5006-5011. Go to original source... Go to PubMed...
  15. Sironen A., Vilkki J., Bendixen C., Thomsen B. (2007): Infertile Finnish Yorkshire boars carry a full-length LINE-1 retrotransposon within the KLP2 gene. Molecular Genetics and Genomics, 278, 385-391. Go to original source... Go to PubMed...
  16. Stinckens A., Mathur P., Janssens S., Bruggeman V., Onagbesan O.M., Schroyen M., Spincemaille G., Decuypere E., Georges M., Buys N. (2010): Indirect effect of IGF2 intron3 g.3072G>A mutation on prolificacy in sows. Animal Genetics, 41, 493-498. Go to original source... Go to PubMed...
  17. van der Steen H.A.M., Prall G.F.W., Plastow G.S. (2005): Application of genomics to the pork industry. Journal of Animal Science, 83, E1-E8.
  18. Van Laere A.S., Nguyen M., Braunschweig M., Nezer C., Collette C., Moreau L., Archibald A.L., Haley C.S., Buys N., Tally M., Andersson G., Georges M., Andersson L. (2003): A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 425, 832-836. Go to original source... Go to PubMed...
  19. Yan X.M., Ren J., Guo Y.M., Ding N.S., Chen K.F., Gao J., Ai H.S., Chen C.Y., Ma J.W., Huang L.S. (2003): Research on the genetic variations of α1-fucosytransferase (FUT1) gene in 26 pig breeds. Acta Genetica Sinica, 30, 830-834. Go to PubMed...
  20. Yan X.M., Huang X., Ren J., Zou Z.Z., Yang S.Z., Ouyang J., Zeng W.H., Yang B., Xiao S.J., Huang L.S. (2009): Distribution of Escherichia coli F4 adhesion phenotypes in pigs of 15 Chinese and Western breeds and a White Duroc × Erhualian intercross. Journal of Medical Microbiology, 58, 1112-1117. Go to original source... Go to PubMed...
  21. Yang G.C., Ren J., Guo Y.M., Ding N.S., Chen C.Y., Huang L.S. (2006): Genetic evidence for the origin of an IGF2 quantitative trait nucleotide in Chinese pigs. Animal Genetics, 37, 179-180. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.