Czech J. Anim. Sci., 2024, 69(3):75-88 | DOI: 10.17221/124/2023-CJAS

Enhancing cattle production and management through convolutional neural networks. A reviewReview

Jean de Dieu Marcel Ufitikirezi1, Roman Bumbálek1, Tomáš Zoubek1, Petr Bartoš1,2, Zbyněk Havelka1, Jan Kresan1, Radim Stehlík1, Radim Kuneš1, Pavel Olšan1, Miroslav Strob1, Sandra Nicole Umurungi1, Pavel Černý1, Marek Otáhal1, Luboš Smutný1
1 Department of Technology and Cybernetics, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
2 Department of Applied Physics and Technology, Faculty of Education, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic

The rise in demand for animal products associated with global population growth has driven the world toward precision livestock farming, where convolutional neural networks (CNN) have gained increasing attention due to their potential to enhance animal health, productivity, and welfare. However, the effectiveness and generalizability of CNN applications in cattle production are limited by several challenges and limitations, which require further research and development to address. This systematic literature review aims to provide a comprehensive overview of the applications of CNN in cattle production. It identified some potential applications of CNN in this field and highlighted the challenges and limitations that need to be addressed to improve the effectiveness and efficiency of CNN applications in cattle production. It also provides valuable insights for researchers, practitioners, and policymakers interested in the use of CNN to enhance cattle production practices, animal welfare, and sustainability. Additionally, it also provides the reader with a summary of the literature on the fundamental concepts of convolutional neural networks and their commonly used model architectures in cattle production. This is because agriculture digitalisation is going more multidisciplinary and people from different areas of expertise may find it helpful to learn more from a combined source.

Keywords: Agriculture 4.0; agriculture digitalization; cattle health monitoring; cattle identification; precision livestock farming; stables technologies

Received: September 12, 2023; Accepted: February 29, 2024; Prepublished online: March 27, 2024; Published: March 29, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ufitikirezi JDDM, Bumbálek R, Zoubek T, Bartoš P, Havelka Z, Kresan J, et al.. Enhancing cattle production and management through convolutional neural networks. A review. Czech J. Anim. Sci. 2024;69(3):75-88. doi: 10.17221/124/2023-CJAS.
Download citation

References

  1. Achour B, Belkadi M, Filali I, Laghrouche M, Lahdir M. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN). Biosyst Eng. 2020 Oct 1;198:31-49. Go to original source...
  2. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Santamaria J, Duan Y, Oleiwi SR. Towards a better understanding of transfer learning for medical imaging: A case study. Appl Sci. 2020 Jun 29;10(13):4523. Go to original source...
  3. Andrew W, Gao J, Mullan S, Campbell N, Dowsey AW, Burghardt T. Visual identification of individual Holstein-Friesian cattle via deep metric learning. Comput Electron Agric. 2021 Jun 1;185:106133. Go to original source...
  4. Ardo H, Guzhva O, Nilsson M, Herlin AH. Convolutional neural network-based cow interaction watchdog. IET Computer Vision. 2018 Mar 1;12(2):171-7. Go to original source...
  5. Bao J, Xie Q. Artificial intelligence in animal farming: A systematic literature review. J Clean Prod. 2022 Jan 10;331:129956. Go to original source...
  6. Barbedo JG, Koenigkan LV, Santos TT, Santos PM. A study on the detection of cattle in UAV images using deep learning. Sensors (Basel). 2019 Dec 10;19(24):5436. Go to original source... Go to PubMed...
  7. Barbedo JG, Koenigkan LV, Santos PM. Cattle detection using oblique UAV images. Drones. 2020;4(4):75. Go to original source...
  8. Bezen R, Edan Y, Halachmi I. Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms. Comput Electron Agric. 2020 May 1;172:105345. Go to original source...
  9. Bhole A, Udmale SS, Falzon O, Azzopardi G. CORF3D contour maps with application to Holstein cattle recognition from RGB and thermal images. Expert Syst Appl. 2022 Apr 15;192:116354. Go to original source...
  10. Bloch V, Frondelius L, Arcidiacono C, Mancino M, Pastell M. Development and analysisof a cnn- and transfer-learning-based classification model for automated dairy cow feeding behavior recognition from accelerometer data. Sensors (Basel). 2023 Feb 27;23(5):2611. Go to original source... Go to PubMed...
  11. Cernek P, Bollig N, Anklam K, Dopfer D. Hot topic: Detecting digital dermatitis with computer vision. J Dairy Sci. 2020 Oct 1;103(10):9110-5. Go to original source... Go to PubMed...
  12. Cockburn M. Review: Application and prospective discussion of machine learning for the management of dairy farms. Animals (Basel). 2020 Sep 18;10(9):1690. Go to original source... Go to PubMed...
  13. de Lima Weber F, de Moraes Weber VA, Menezes GV, Junior ASO, Alves DA, de Oliveira MVM, Matsubara ET, Pistori H, de Abreu UGP. Recognition of Pantaneira cattle breed using computer vision and convolutional neural networks. Comput Electron Agric. 2020;175:105548. Go to original source...
  14. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on computer vision and pattern recognition; 2009 Jun 20-25; Miami, FL; 2009. p. 248-55. Go to original source...
  15. Fuentes A, Yoon S, Park J, Park DS. Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information. Comput Electron Agric. 2020 Oct 1; 177:105627. Go to original source...
  16. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980 Apr 1;36(4):193-202. Go to original source... Go to PubMed...
  17. Garcia R, Aguilar J, Toro M, Pinto A, Rodriguez P. A systematic literature review on the use of machine learning in precision livestock farming. Comput Electron Agric. 2020 Dec 1;179:105826. Go to original source...
  18. Ghosh A, Sufian A, Sultana F, Chakrabarti A, De D. Fundamental concepts of convolutional neural network. In: Balas VE, Kumar R, Srivastava R, editors. Recent trends and advances in artificial intelligence and internet of things. Cham: Springer International Publishing; 2020. p. 519-67. Go to original source...
  19. Gikunda PK, Jouandeau N. State-of-the-art convolutional neural networks for smart farms: A review. In: Arai K, Bhatia R, Kapoor S, editors. Intelligent computing. Cham: Springer International Publishing; 2019. p. 763-75. Go to original source...
  20. Guan H, Motohashi N, Maki T, Yamaai T. Cattle identification and activity recognition by surveillance camera. Elect Imaging. 2020;32:1-6. Go to original source...
  21. Guzhva O, Ardo H, Nilsson M, Herlin A, Tufvesson L. Now you see me: Convolutional neural network based tracker for dairy cows. Front Robot AI. 2018 Sep 19;5:107. Go to original source... Go to PubMed...
  22. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA; 2016. p. 770-8. Go to original source...
  23. Hou H, Shi W, Guo J, Zhang Z, Shen W, Kou S. Cow rump identification based on lightweight convolutional neural networks. Information. 2021 Sep 2;12(9):361. Go to original source...
  24. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang, W, Weyand T, Andreetto M, Adam H. MobileNets: Efficient convolutional neural networks for mobile vision applications. ArXiv. 2017 Apr:abs/1704.04861.
  25. Hu H, Dai B, Shen W, Wei X, Sun J, Li R, Zhang, Y. Cow identification based on fusion of deep parts features. Biosyst Eng. 2020 Apr 1;192:245-56. Go to original source...
  26. Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI, USA; 2017. p. 2261-9. Go to original source...
  27. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959 Oct;148(3):574-91. Go to original source... Go to PubMed...
  28. Chen C, Zhu W, Norton T. Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning. Comput Electron Agric. 2021 Aug 1;187:106255. Go to original source...
  29. Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA; 2018. p. 1800-7. Go to original source...
  30. Jiang B, Yin X, Song H. Single-stream long-term optical flow convolution network for action recognition of lameness dairy cow. Comput Electron Agric. 2020a;175:105536. Go to original source...
  31. Jiang M, Rao Y, Zhang J, Shen Y. Automatic behavior recognition of group-housed goats using deep learning. Comput Electron Agric. 2020b Oct 1;177:105706. Go to original source...
  32. Jung DH, Kim NY, Moon SH, Jhin C, Kim HJ, Yang JS, Kim HS, Lee TS, Lee JY, Park SH. Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals (Basel). 2021 Feb 1;11(2):357. Go to original source... Go to PubMed...
  33. Kalouris G, Zacharaki EI, Megalooikonomou V. Improving CNN-based activity recognition by data augmentation and transfer learning. Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN); 2019 Jul 23-25; Aalto University, Finland; 2019. p. 1387-94. Go to original source...
  34. Kamilaris A, Prenafeta-Boldu FX. A review of the use of convolutional neural networks in agriculture. J Agric Sci. 2018;156(3):312-22. Go to original source...
  35. Kang X, Li S, Li Q, Liu G. Dimension-reduced spatiotemporal network for lameness detection in dairy cows. Comput Electron Agric. 2022 Jun 1;197:106922. Go to original source...
  36. Kim S, Hidaka Y. Breathing pattern analysis in cattle using infrared thermography and computer vision. Animals (Basel). 2021 Jan 16;11(1):207. Go to original source... Go to PubMed...
  37. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems. Red Hook, NY: Curran Associates, Inc.; 2012. 817 p.
  38. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989 Dec 1;1(4):541-51. Go to original source...
  39. Li X, Cai C, Zhang R, Ju L, He J. Deep cascaded convolutional models for cattle pose estimation. Comput Electron Agric. 2019 Sep 1;164:104885. Go to original source...
  40. Li C, Tokgoz KK, Fukawa M, Bartels J, Ohashi T, Takeda K, Ito H. Data augmentation for inertial sensor data in CNNs for cattle behavior classification. IEEE Sens Lett. 2021a Nov;5(11):1-4. Go to original source...
  41. Li G, Huang Y, Chen Z, Chesser GD, Purswell JL, Linhoss J, Zhao Y. Practices and applications of convolutional neural network-based computer vision systems in animal farming: A review. Sensors (Basel). 2021b Feb 21;21(4):1492. Go to original source... Go to PubMed...
  42. Li Z, Lei X, Liu S. A lightweight deep learning model for cattle face recognition. Comput Electron Agric. 2022a Apr 1;195:106848. Go to original source...
  43. Li Z, Zhang Q, Lv S, Han M, Jiang M, Song H. Fusion of RGB, optical flow and skeleton features for the detection of lameness in dairy cows. Biosyst Eng. 2022b Jun 1;218:62-77. Go to original source...
  44. Liu H, Reibman AR, Boerman JP. Video analytic system for detecting cow structure. Comput Electron Agric. 2020 Nov 1;178:105761. Go to original source...
  45. Mahmud MS, Zahid A, Das AK, Muzammil M, Khan MU. A systematic literature review on deep learning applications for precision cattle farming. Comput Electron Agric. 2021 Aug 1;187:106313. Go to original source...
  46. Okinda C, Nyalala I, Korohou T, Okinda C, Wang J, Achieng T, Wamalwa P, Mang T, Shen M. A review on computer vision systems in monitoring of poultry: A welfare perspective. Artif Intell Agric. 2020 Jan 1;4:184-208. Go to original source...
  47. Pacheco VM, Sousa RV, Sardinha EJS, Rodrigues AVS, Brown-Brandl TM, Martello LS. Deep learning-based model classifies thermal conditions in dairy cows using infrared thermography. Biosyst Eng. 2022 Sep 1;221:154-63. Go to original source...
  48. Porter IR, Wieland M, Basran PS. Feasibility of the use of deep learning classification of teat-end condition in Holstein cattle. J Dairy Sci. 2021 Apr 1;104(4):4529-36. Go to original source... Go to PubMed...
  49. Qiao Y, Su D, Kong H, Sukkarieh S, Lomax S, Clark C. Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine. 2019a Jan 1;52(30):318-23. Go to original source...
  50. Qiao Y, Cappelle C, Ruichek Y, Yang T. ConvNet and LSH-based visual localization using localized sequence matching. Sensors (Basel). 2019b May 28;19(11):2439. Go to original source... Go to PubMed...
  51. Qiao Y, Truman M, Sukkarieh S. Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Comput Electron Agric. 2019c Oct 1;165:104958. Go to original source...
  52. Qiao Y, Kong H, Clark C, Lomax S, Su D, Eiffert S, Sukkarieh S. Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Comput Electron Agric. 2021a Jun 1;185:106143. Go to original source...
  53. Qiao Y, Clark C, Lomax S, Kong H, Su D, Sukkarieh S. Automated individual cattle identification using video data: A unified deep learning architecture approach. Frontiers in Animal Science. 2021b;2. Go to original source...
  54. Qiao Y, Xue T, Kong H, Clark C, Lomax S, Rafique K, Sukkarieh S. One-shot learning with pseudo-labeling for cattle video segmentation in smart livestock farming. Animals (Basel). 2022 Feb 23;12(5):558. Go to original source... Go to PubMed...
  55. Raina R, Madhavan A, Ng A. Large-scale deep unsupervised learning using graphics processors. Proceedings of the 26th International Conference On Machine Learning (ICML), 2009 Jun 14-18; Montreal, Canada; 2009. 110 p. Go to original source...
  56. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017 Sep 1;29(9):2352-449. Go to original source... Go to PubMed...
  57. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on computer vision and pattern recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA; 2016. p. 779-88. Go to original source...
  58. Ren K, Bernes G, Hetta M, Karlsson J. Tracking and analysing social interactions in dairy cattle with real-time locating system and machine learning. J Syst Archit. 2021 Jun 1;116:102139. Go to original source...
  59. Riaboff L, Shalloo L, Smeaton AF, Couvreur S, Madouasse A, Keane MT. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput Electron Agric. 2022 Jan 1;192:106610. Go to original source...
  60. Rivas A, Chamoso P, Gonzalez-Briones A, Corchado JM. Detection of cattle using drones and convolutional neural networks. Sensors (Basel). 2018 Jun 27;18(7):2048. Go to original source... Go to PubMed...
  61. Rodriguez Alvarez J, Arroqui M, Mangudo P, Toloza J, Jatip D, Rodriguez JM, Teyseyre A, Sanz C, Zunino A, Machado C, Mateos C. Body condition estimation on cows from depth images using Convolutional Neural Networks. Comput Electron Agric. 2018;155:12-22. Go to original source...
  62. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015 Dec 1;115(3):211-52. Go to original source...
  63. Saar M, Edan Y, Godo A, Lepar J, Parmet Y, Halachmi I. A machine vision system to predict individual cow feed intake of different feeds in a cowshed. Animal. 2022 Jan 1;16(1):100432. Go to original source... Go to PubMed...
  64. Sadigov R. Rapid growth of the world population and its socioeconomic results. Sci World J. 2022 Mar 23;2022:8110229. Go to original source... Go to PubMed...
  65. Salau J, Krieter J. Instance segmentation with mask R-CNN applied to loose-housed dairy cows in a multi-camera setting. Animals (Basel). 2020 Dec 15;10(12):2402. Go to original source... Go to PubMed...
  66. Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T. Cattle detection and counting in UAV images based on convolutional neural networks. Int J Remote Sens. 2020 Jan 2;41(1):31-52. Go to original source...
  67. Shen W, Hu H, Dai B, Wei X, Sun J, Jiang L, Sun Y. Individual identification of dairy cows based on convolutional neural networks. Multimed Tools Appl. 2020 Jun 1;79(21):14711-24. Go to original source...
  68. Schillings J, Bennett R, Rose DC. Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Front Anim Sci. 2021 May 13;2:1-17. Go to original source...
  69. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the International Conference on Learning Representations (ICLR 2015); 2015 May 7-9; San Diego, CA, USA; 2015.
  70. Soares VHA, Ponti MA, Goncalves RA, Campello RJGB. Cattle counting in the wild with geolocated aerial images in large pasture areas. Comput Electron Agric. 2021 Oct 1;189:106354. Go to original source...
  71. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the AAAI Conference on Artificial Intelligence; 2016 Feb 12-17; Phoenix, Arizona, USA; 2016. p. 31. Go to original source...
  72. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA; 2016b. p. 2818-26. Go to original source...
  73. Tassinari P, Bovo M, Benni S, Franzoni S, Poggi M, Mammi LME, Mattoccia S, Di Stefano L, Bonora F, Barbaresi A, Santolini E, Torreggiani D. A computer vision approach based on deep learning for the detection of dairy cows in free stall barn. Comput Electron Agric. 2021 Mar 1;182:106030. Go to original source...
  74. Tona GO. Impact of beef and milk sourced from cattle production on global food security. In: Muhammad Abubakar, editor. Bovine science. Rijeka: IntechOpen; 2021.
  75. Tsai YC, Hsu JT, Ding ST, Rustia DJA, Lin TT. Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system. Biosyst Eng. 2020 Nov 1;199:97-108. Go to original source...
  76. Wang H, Qin J, Hou Q, Gong S. Cattle face recognition method based on parameter transfer and deep learning. J Phys Conf Ser. 2020 Jan 1;1453(1):012054. Go to original source...
  77. Weng Z, Meng F, Liu S, Zhang Y, Zheng Z, Gong C. Cattle face recognition based on a Two-Branch convolutional neural network. Comput Electron Agric. 2022 May 1;196:106871. Go to original source...
  78. Wu D, Wu Q, Yin X, Jiang B, Wang H, He D, Song H. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosyst Eng. 2020 Jan 1;189:150-63. Go to original source...
  79. Wu D, Wang Y, Han M, Song L, Shang Y, Zhang X, Song H. Using a CNN-LSTM for basic behaviors detectionof a single dairy cow in a complex environment. Comput Electron Agric. 2021 Mar 1;182:106016. Go to original source...
  80. Xiao J, Liu G, Wang K, Si Y. Cow identification in free-stall barns based on an improved Mask R-CNN and an SVM. Comput Electron Agric. 2022 Mar 1;194:106738. Go to original source...
  81. Xu B, Wang W, Falzon G, Kwan P, Guo L, Chen G, Tait A, Schneider D. Automated cattle counting using Mask R-CNN in quadcopter vision system. Comput Electron Agric. 2020 Apr 1;171:105300. Go to original source...
  82. Xudong Z, Xi K, Ningning F, Gang L. Automatic recognition of dairy cow mastitis from thermal imagesby a deep learning detector. Comput Electron Agric. 2020 Nov 1;178:105754. Go to original source...
  83. Yin X, Wu D, Shang Y, Jiang B, Song H. Using an EfficientNet-LSTM for the recognition of single cow's motion behaviours in a complicated environment. Comput Electron Agric. 2020 Oct 1;177:105707. Go to original source...
  84. Yitbarek M. Livestock and Livestock products by 2050. IJAR. 2019 Sep 10;4(30).
  85. Yu Z, Liu Y, Yu S, Wang R, Song Z, Yan Y, Li F, Wang Z, Tian F. Automatic detection method of dairy cow feeding behaviour based on YOLO improved model and edge computing. Sensors (Basel). 2022 Apr 24;22(9):3271. Go to original source... Go to PubMed...
  86. Yukun S, Pengju H, Yujie W, Ziqi C, Yang L, Baisheng D, Runze L, Yonggen Z. Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J Dairy Sci. 2019 Nov;102(11):10140-51. Go to original source... Go to PubMed...
  87. Zhao JM, Lian QS. Compact loss for visual identification of cattle in the wild. Comput Electron Agric. 2022 Apr 1;195:106784. Go to original source...
  88. Zhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: A review. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-32. Go to original source... Go to PubMed...
  89. Zin TT, Pwint MZ, Seint PT, Thant S, Misawa S, Sumi K, Yoshida K. Automatic cow location tracking system using ear tag visual analysis. Sensors (Basel). 2020 Jun 23;20(12):3564. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.