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Abstract: The rise in demand for animal products associated with global population growth has driven the world 
toward precision livestock farming, where convolutional neural networks (CNN) have gained increasing attention 
due to their potential to enhance animal health, productivity, and welfare. However, the effectiveness and general-
izability of CNN applications in cattle production are limited by several challenges and limitations, which require 
further research and development to address. This systematic literature review aims to provide a comprehensive 
overview of the applications of CNN in cattle production. It identified some potential applications of CNN in this 
field and highlighted the challenges and limitations that need to be addressed to improve the effectiveness and 
efficiency of CNN applications in cattle production. It also provides valuable insights for researchers, practition-
ers, and policymakers interested in the use of CNN to enhance cattle production practices, animal welfare, and 
sustainability. Additionally, it also provides the reader with a summary of the literature on the fundamental con-
cepts of convolutional neural networks and their commonly used model architectures in cattle production. This 
is because agriculture digitalisation is going more multidisciplinary and people from different areas of expertise 
may find it helpful to learn more from a combined source.

Keywords: Agriculture 4.0; agriculture digitalization; cattle health monitoring; cattle identification; precision 
livestock farming; stables technologies

and 11.1 billion by 2100 (Sadigov 2022). The rise 
in demand for animal products associated with 
global population growth and food demand (in-

According to  the most recent estimate of  the 
United Nations, the global population is predicted 
to exceed 8.5 billion in 2030, 9.7 billion in 2050, 

Created based on data obtained during the realization of project TAČR TREND FW03010447 Development of an intelligent 
system for increasing the performance of dairy cattle using artificial intelligence methods, which is financially supported 
by the Technology Agency of the Czech Republic.
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cluding animal products) is forecast to increase 
by 59% to 98% by 2050, where 2.6 billion cattle are 
expectedto be produced (Yitbarek 2019). Cattle 
production is  among the critical components 
of the global food supply chain, providing meat, 
dairy products, and other animal products for hu-
man consumption (Tona 2021). To keep up with the 
growing demand for animal products and control-
ling various factors that may affect animal health 
and productivity, the development of precision live-
stock farming technologies that can enhance the 
monitoring and management of animal health and 
productivity is essential for the sustainability of the 
industry. This allows the opportunity to increase 
animal productivity and early detection of health 
concerns (Schillings et al. 2021). Convolutional 
neural networks (CNN), one of the deep learning 
algorithms, provedto be a cutting edge for image 
processing and has shown promising results in sev-
eral aspects where it has been applied (Kamilaris 
and Prenafeta-Boldu 2018). In recent years, CNNs 
have emergedas a promising tool for improving cat-
tle production practices by enabling the automa-
tion of tasks, including cattle identification, disease 
detection, behavior analysis, and feed optimization. 
However, the successful application of CNN in cat-
tle farming requires addressing several challenges 
related to data collection, processing, and model 
transferability. 

In this systematic literature review, we aim to pro-
vide an overview of the current state of knowledge 
regarding the applications of CNN in cattle produc-
tion and to identify the benefits, challenges, and 
future directions of CNN applications in this field. 
The findings of this review can inform future re-
search and guide the development of CNN applica-
tions in cattle production to enhance animal health, 
productivity, and welfare. Other authors, including 
Gikunda and Jouandeau (2019) and Kamilaris and 
Prenafeta-Boldu (2018), have previously reviewed 
the broad applications of CNN in smart farms and 
agriculture in general, but mostly focused on plant 
production rather than animal farming. Others 
such as Mahmud et al. (2021), Bao and Xie (2022), 
Chen et al. (2021), Cockburn (2020), Garcia et al. 
(2020) and Qiao et al. (2021a) have reviewed vari-
ous applications of artificial intelligence (AI) and 
deep learning in animal farming. Other reviews 
of convolutional neural networks were also pro-
vided for some computer vision tasks like image 
classification by Rawat and Wang (2017) and object 

detection by Zhao et al. (2019). Also, some other 
researchers like Li et al. (2021b) have reviewed the 
application of CNN in animal farming in general 
and partially for some animal species, such as poul-
try by Okinda et al. (2020), goats by Jiang et al. 
(2020b), etc. However, there was no comprehensive 
review that covers in a specific way CNN applica-
tions in cattle production were found to the best 
of the authors’ knowledge.

Basic concepts of CNN and commonly used 
model architectures in cattle production

Convolutional neural networks are part of the 
most common artificial neural networks today 
for nearly all Artificial Intelligence tasks related 
to computer vision and image processing. They are 
mainly used to perform image analysis and classifi-
cation, group images with respect to their similar-
ity, and perform object recognition within a frame. 
In 1959, two neurophysiologists, Hubel and Wiesel 
(1959), introduced artificial neural networks while 
working on the cat’s main visual cortex. After that, 
their approach effectively became one of the core 
principles of deep learning (Ghosh et al. 2020). 
Based on their work, in 1980, Neocognitron, a mul-
tilayered and autonomous neural network with hi-
erarchical visual pattern recognition capabilities 
through learning, was proposed by  Fukushima 
(1980), and hence the convolutional neural net-
work got his first theoretical model based on this 
architecture. In 1989, a significant improvement 
to Neocognitron architecture was made by LeCun 
et al. (1989) by developing LeNet, a CNN frame-
work that was able to recognize the MNIST hand-
written digits dataset with success. Even though 
CNN did not perform well in a variety of complex 
tasks after the discovery of LeNet due to numer-
ous limitations, such as the shortage in algorithm 
innovation, large training data, and insufficient 
computer processing capacity, but it started the 
era of CNN in Computer Vision. Later in 2009, 
the use of graphics processing units (GPUs) was 
launched by Raina et al. (2009) to boost the training 
speed of the network, which was up to 72.6 times 
faster than using only the central processing unit 
(CPU). Again in 2009, ImageNet, one of the world‘s 
largest openly accessible datasets with annota-
tion, was developed to promote the advancement 
of CNN in computer vision (Deng et al. 2009).
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it passes the image through the CNN algorithm 
only once to get the output, which means that pre-
diction in the entire image is processed in a single 
algorithm run, which accounts for its popular-
ity due to its speed and accuracy (Redmon et al. 
2016). The YOLO algorithm was upgraded until 
today that different versions are being introduced. 
To ensure maximum information flow between 
network layers, Huang et al. (2017) introduced 
DenseNet, a convolutional neural network in which 
each layer is connected to all other layers that are 
deeper in the network, resulting in several com-
pelling advantages such as relieving the vanishing 
gradient problem, enhancing feature propagation, 
stimulating the reuse of features, and significantly 
reducing the number of parameters (Huang et al. 
2017). As convolutional neural networks (CNN) 
were getting very popular, modern CNN archi-
tectures were becoming deeper and increasingly 
complex to achieve a higher degree of accuracy; 
however, such networks could not be used in real-
time applications such as augmented reality, self-
driving cars, and robotics. Alternatively, Howard 
et al. (2017) presented a lightweight model that 
makes useof a depthwise separable convolution, 
a new type of convolutional layer. Considering their 
compact size, it was uncertain that these models 
were particularly appropriate for mobile and em-
bedded devices, and hence the name of MobileNet 
(Howard et al. 2017). Chollet (2018) also intro-
duced an Inception-inspired deep convolutional 
neural network architecture in 2017 by substitut-
ing Inception modules with depth-wise separable 
convolutions. The model was given the name 
Xception, which stands for “Extreme Inception” 
and was based on the success of depth-wise sepa-
rable convolution in the MobileNet and the rela-
tive lightness compared to traditional convolution 
(Chollet 2018).

Performance metrics commonly used 
to evaluate CNN models in cattle 
production

Model evaluationis a major part of building an ef-
fective deep learning model. The four key classi-
fication metrics, accuracy, precision, recall, and 
F1 score, have been used mostly by the identified 
studies for both the evaluation and testing of their 
CNN models. The total number of correct predic-

Thanks to these advancements, AlexNet was de-
signed by Krizhevsky et al. (2012) and achieved 
an outstanding accuracy rate on  the ImageNet 
Large-Scale Visual Recognition Challenge. 
Following AlexNet’s breakthrough, CNN experi-
enced significant admiration in object detection, 
classification, and segmentation tasks, and numer-
ous advanced CNN models have been developed 
throughout the years (Ghosh et al. 2020). 

With the target of further deepening the CNN ar-
chitecture, Simonyan and Zisserman (2015) intro-
duced VGGNet in 2014. At that time, VGG-16 was 
proposed to have a total of 16 layers, and compared 
to the performance of earlier networks, it showed 
great results. The in-depth study provided in their 
work had a big impact on CNN, where it was con-
firmed that performance may be  improved sig-
nificantly by deepening the model. The Inception 
network, also known as GoogleLeNet, was also de-
veloped by Szegedy et al. (2016a) in the same year. 
It was the largest and most effective deep learning 
convolutional neural network architecture at the 
time, with the goal of reducing the computational 
costs of very deep CNN by applying a 1 × 1 con-
volution and concatenating the channels (Szegedy 
et al. 2015a). 

As the development of CNN-based architectures 
has been growing, there was a common trend in the 
research community that the network architectures 
needed to go deeper and deeper, and hence the 
addition of more layers in a deep neural network 
was preferred for every subsequent winning ar-
chitecture. However, simply stacking the layers 
to increase the depth of CNN was associated with 
the common issue of vanishing or exploding gra-
dient in deep learning, which increases the train-
ing errors. As solution, He et al. (2016) proposed 
Residual Network or ResNet in 2015, to address 
the issue of the necessity for a deep network with-
out a vanishing gradient. The outstanding per-
formance of Inception and ResNet has led to the 
idea of combining the two technologies to develop 
Inception-ResNet, a convolutional neural network 
architecture that expands on the Inception family 
of architectures while also including residual con-
nections (Szegedy et al. 2016b).

Another important CNN architecture is YOLO, 
a convolutional neural network architecture intro-
duced by Redmon et al. (2016) to detect multiple 
objects present in an image in real-time while draw-
ing bounding boxes around them. As per its name, 
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tions over the total number of input samples ratio 
is known as accuracy, while the model’s ability 
to accurately identify targets is known as precision. 
Recall reflects the model’s ability to detect targets, 
and the F1 score is the harmonic means of preci-
sion and recall. All four of the indicators mentioned 
above range from 0 to 1, with a high number in-
dicating the good predictive capacity of the model 
(Qiao et  al. 2019b). Classification metrics and 
confusion matrices which can be defined as the 
result of classification problems are very closely 
connected and dependent on each other. There 
usually exist four possibilities of the result: True 
Positive, False Positive, False Negative, and True 
Negative. The possible classification outcomes are 
shown in Table 1.

The number of correctly detected objects is re-
ferredto as the True Positive (TP), which means that 
there was an object (the result should be positive) 
and the algorithm detects it (returned positive). The 
Missed object detections are referred to as False 
Negatives (FN), which simply means that there was 
an object (the result should be positive), but the 
algorithm did not detect it (and, therefore, returned 
negative). Moreover, the number of false detection 
of objects is referredto as the False Positive (FP), 
which means that there was no object (the result 
should be negative), but the algorithm seems to de-
tect the object (returned positive). A true negative 
simply means that there was no object (the result 
should be negative), and the algorithm correctly 
states that the checked area does not hold an object 
(returned negative).

The following metrics were foundto be the most 
used to evaluate CNN models in the analysed studies:

Accuracy =
All corrects

=
TP + TN

(1)
All predictions TP + TN + 

+ FP + FN

Precision =
True positives

=
TP

(2)
Predicted positives TP + FP

Recall =
True positives

=
TP

(3)
Predicted positives TP + FN

F1 – score =
2

(4)
1

+
1

Recall Precision

Review reports

This systematic literature review identified 
52 studies that used convolutional neural networks 
in cattle production, covering a wide range of ap-
plications. Following the scope of this work and 
after going through the identified studies, the cat-
tle production issues classified into two categories 
were taken into consideration, as they were foundto 
be among the highly addressed using CNN. These 
are cattle identification and cattle health monitor-
ing. Identification is among the key management 
techniques to keep animal records to make more in-
formed management decisions (Qiao et al. 2021a). 
In cattle production, it contributes greatly to the 
tracking of cattle performance. While associated 
with continuous health monitoring, it enables the 
opportunity to improve well-being, productivity, 
and early detection of health concerns (Mahmud 
et al. 2021). Various cattle health-related issues 
were addressed using different approaches such 
as automated monitoring of cattle behavior and 
activities, cattle pose estimation, measurement 
of cattle body condition score, desease detection 
such as mastitis and lameness, heat stress evalua-
tion, Breathing Pattern Analysis, body weight and 
structure estimation, etc. Identification-related is-
sues included cattle detection and tracking, cattle 
face detection, cattle breed recognition and clas-
sification, etc. A total of 28 papers were identified 
in the category of cattle health monitoring while 
24 papers were identified in the category of cattle 
identification. This result shows that both aspects 
were addressed almost equally. Figure 1 displays 
the distribution of the identified papers by year 
for each category. It shows that research based 
on CNN application in cattle identification and 
health monitoring has grown gradually each year, 
with the highest number of publications identified 
for the year 2020.

Additionally, in Figure 2 we present the distribu-
tion of the identified papers by country. China took 
first place with the most papers (20 out of 52), fol-

Table 1. Possible classification outcomes: TP, FP, FN, TN

Real situation
positive negative

M
od

el
  

pr
ed

ic
tio

n positive true positive 
(TP)

false positive 
(FP)

negative false negative 
(FN)

true negative 
(TN)
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farms or regions. This can result in inconsistent 
data quality and format, which can make it difficult 
to develop accurate and reliable CNN models. The 
reviewed studies proved that data were collected 
from various sources, such as cameras and sensors 
under different settings, environmental and light-
ing conditions, etc. Additionally, different studies 
may use different methods for data processing, such 
as image cropping, resizing, or normalization and 
different label-preserving transformations tech-
niques for data augmentation (Kalouris et al. 2019; 
Li et al. 2021a). These methods can affect the dis-
tribution and range of features in the data, which 
can in turn affect the performance of CNN models. 
Generally, this lack of standardization in data col-
lection and processing canbe a challenge for the 
practical application of CNN in cattle farming, 
as it requires developing models that can handle 
and learn from heterogeneous data, which can 

lowed by Brazil (6), and Australia (5). The summary 
of the main findings of the studies are summarized 
in Table 2.

Challenges and future research 
directions

Through this systematic literature review, this 
paper identified three key challenges to the applica-
tion of CNN in cattle production in general: (1) the 
lack of standardization in data collection and pro-
cessing, (2) the need for large and diverse datasets, 
and (3) the limited transferability of models across 
different populations and farming systems. The 
lack of standardization in data collection and pro-
cessing refers to the challenge of developing CNN 
models using heterogeneous data that have been 
collected and processed differently across different 

Figure 1. Identified papers in  each 
category by year
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Figure 2. Distribution of  identified 
papers by country
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Table 2. Summary of the identified studies that applied CNN in cattle production

Issue Dataset Model 
architecture Performance Reference

Individual identi- 
fication and feed- 
ing behaviour 
monitoring 

7 801 RGB images 
captured by authors Xception

accuracy was 96.55% for 
individual identification; 

average precision was 
90.84% for feeding 
behaviour analysis

Achour et al. (2020)

Cows feed intake 
estimation

994 RGB images cap-
tured by authors ResNet

identification accuracy was 
93.65% while the amount 

of feed consumed, resulting 
in the mean absolute and 
square errors (MAE and 

MSE) of 0.127 kg, and 0.034 
kg2 respectively

Bezen et al. (2020)

Cow tracking

annotations from 
Ardo et al. (2018), 

(2 200 frames consist-
ing of 9 279 images) 

VGGNet cows were successfully 
tracked for over 20 min Guzhva et al. (2018)

Cow rump 
identification

3 057 rump images 
acquired by authors MobileNet identification accuracy 

was 99.76% Hou et al. (2021)

Cattle identifi- 
cation

363 rear-view videos 
from 50 cattle Inception identification accuracy 

was 93.3% Qiao et al. (2021b)

Segmentation 
of dairy cows

575 Holstein Friesian 
images captured by 

authors 
ResNet

averaged precision scores 
for bounding boxes were 

91% and 85% for 
segmentation masks

Salau and Krieter 
(2020)

Identification 
of dairy cows

82 633 cow images 
captured by authors AlexNet cow identification accuracy 

was 96.65% Shen et al. (2020)

Cattle breed recog-
nition

27 849 images 
of the Pantaneira 

cattle breed

Resnet
DenseNet Inception- 

Resnet-V

the accuracy was 99% 
in all networks

de Lima Weber 
et al. (2020)

Recognition of basic 
behaviors of cows 

18 h of videos 
captured by authors VGGNet the average recognition accu-

racy of 97.6% was obtained Wu et al. (2021)

Cattle identification 
and activity recog-
nition

18 h of videos cap-
tured by authors RefineDet

average recognition accuracy 
of 84.1% and 64.4% for 
active and static modes

Guan et al. (2020)

Cow structure 
detection

 1 495 video frames 
captured by authors ResNet

for body and leg-hoof region 
segmentations F1scores 

were 0.71 and 0.59 
Liu et al. (2020)

Cattle behavior 
recognition

350 videos 
(12 min each) YOLO the accuracy of 0.856 

was obtained Fuentes et al. (2020)

Lameness 
detection 

210 videos 
(15 to 20 s each)

YOLO, DarkNet 
ResNet

an accuracy of 98.57% 
was obtained Wu et al. (2020)

Cattle pose 
estimation

2 134 images 
captured by authors VGGNet average mean score 

of 90.39% was achieved Li et al. (2019)
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Issue Dataset Model 
architecture Performance Reference

Action recognition 
of lameness cows

1 080 dairy cow vid-
eos captured 
by authors

DenseNet the mAP was 98.24% Jiang et al. (2020a)

Cattle face 
recognition

1 087 images cap-
tured by authors VGGNet recognition accuracy was 

93% Wang et al. (2020)

Cattle detection 
and counting

750 aerial images 
captured by authors ResNet

an accuracy of 94% for cattle 
on pastures and 92% 

in feedlots 
Xu et al. (2020)

Cattle segmentation 1 188 images col-
lected by authors ResNet mean pixel accuracy (MPA) 

of 92% was achieved Qiao et al. (2019c)

Cow parts identi-
fication

4 353 images 
collected by authors YOLO, AlexNet a cow identification accuracy 

of 98.36% was achieved Hu et al. (2020)

Cow head detection 
and tracking

10 793 images col-
lected by authors YOLO, MobileNet

an accuracy of 100% for head 
detection and 92.5% for ear 

tag digit recognition
Zin et al. (2020)

Detection of dairy 
cows

25 200 frames were 
sampled YOLO the mean average precision 

of the detection was 64–66%
Tassinari et al. 

(2021)

Cows’ activities and 
social behaviors 
monitoring

18 640 video 
frames collected 
by the authors

Inception an accuracy of 93.2% was 
achieved Ren et al. (2021)

Cattle detection 
and counting

670 f UAV images 
collected by the au-

thors
YOLO

the detection performance 
achieved a precision 

of 95.7%
Shao et al. (2020)

Cattle detection 13 520 images col-
lected by the authors VGGNet an average accuracy of 97.1% 

has been obtained Rivas et al. (2018)

Cattle detection
19 097 images 
were collected 
by the authors

15 CNN architectures were 
tested including VGGNet, 
Xception, ResNet-50 v2, 

ResNet-101 v2, Inception v3, 
ResNet-152 v2, DenseNet 

201 MobileNet, MobileNet 
v2, DenseNet 121, DenseNet 

169, Inception ResNet v2, 
MobileNet, etc.

most models were 
able to reach 

accuracies above 95% 

Barbedo et al. 
(2019)

Cattle detection 15 400 images col-
lected by the authors Xception average detection accuracy 

of 83% was obtained
Barbedo et al. 

(2020)

Cattle vocal 
classification

a total of 12 000 
recorded files were 

collected
CNN-MFCCs an accuracy of 91.38% in 

recognizing cattle sounds Jung et al. (2021)

Cattle segmen- 
tation 

a total of 22 cattle 
videos were 

recorded by the 
authors

Xception a contour accuracy 
of 80.8% was achieved Qiao et al. (2022)

Table 2 to be continued
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Issue Dataset Model 
architecture Performance Reference

Cattle identi- 
fication 

4 738 images from 
MVCAID100 

and MVCAIDRE 
datasets both 
produced by 

authors

Inception-ResNet

the average accuracy after 
verification on OpenCat-
tle2020 was 98.39% with 
Inception V3 and 98.80% 

with ResNet50 

Zhao and Lian 
(2022)

Body condition 
estimation

a dataset of 1 661 cow 
depth images was 

built by the 
authors

SqueezeNet the overall accuracy within 
0.50 units was 94%

Rodriguez Alvarez 
et al. (2018)

Cattle identifi- 
cation 

a total of 516 cattle 
videos were collected 

by authors
Inception a maximum accuracy 

of 91% was achieved Qiao et al. (2019a)

Breathing pattern 
analysis

1 400 images were 
collected Mask R-CNN, ResNet an accuracy of 76% was 

achieved
Kim and Hidaka 

(2021)

Cow body condition 
score estimation

3 430 images col-
lected by the authors DenseNet average precision was 90% 

with a 0.5 range error Yukun et al. (2019)

Cow identification a total of livest im-
ages were collected

AlexNet, Vgg, ResNet, 
MobileNet and GoogLeNet

an accuracy of 97.95% 
was achieved Li et al. (2021a)

Drinking behaviour 
monitoring

1 000 images col-
lected by the authors YOLO and Darknet F1 score of 0.987 

was achieved Tsai et al. (2020)

Digital dermatitis 
(DD) detection

3 500 DD lesion im-
ages produced by the 

authors
YOLO an accuracy of 88% 

was achieved Cernek et al. (2020)

Classification of 
teat-end condition

1 589 digital images 
of dairy cow teats 

were taken by authors
GoogLeNet an overall accuracy 

of 77.4% was achieved Porter et al. (2021)

Cattle identifi- 
cation

OpenCows2020 data-
set also developed by 

these authors
RetinaNet and YOLO an accuracy of 93.8% 

was achieved Andrew et al. (2021)

Cattle detection 
and counting

5 058 images col-
lected by the authors Inception -Resnet an accuracy of 92,8 % was 

achieved for cattle detection Soares et al. (2021)

Cattle recognition
3 694 images were 

collected by the 
authors

MobileNet, Xception, 
DenseNet

an average accuracy 
of 99.71% was obtained Bhole et al. (2022)

Lameness 
detection

456 videos were 
recorded

YOLO 
DenseNet

a detection accuracy for 
lameness in cows was 98.50% Kang et al. (2022)

Cow identifi- 
cation

12 000 images of 48 
cows were used as the 

dataset
ResNet

the proposed method 
achieves a 98.67% cow 
identification accuracy

Xiao et al. (2022)

Cattle face 
recognition

18 200 cow faces im-
ages were collected 

by the authors

AlexNet, VGGNet, 
GoogLeNet, ResNet

an average accuracy 
of 99.69% was obtained Weng et al. (2022)

Table 2 to be continued
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Issue Dataset Model 
architecture Performance Reference

Cow feed intake 
prediction

the model was 
trained using a data-
set of 40 000 tensors

EfficientNet 

a mean absolute error of 
0.14 kg per meal, and a root 
mean square error of 0.19 kg 

per meal were achieved

Saar et al. (2022)

Cattle face 
recognition 

10 239 cattle face im-
ages were collected YOLOv3 the accuracy of 98.37% 

was achieved Li et al. (2022a)

Lameness detection a total of 680 cows’ 
monitoring videos VGGNet the best accuracy was 97.20% Li et al. (2022b)

Thermal condition 
classification

36 990 thermal  
images were used

CNNF-RR, CNNF-RT, 
CNNO-RR and CNNO-RT

average accuracy 
of 73.5% was obtained

Pacheco et al. 
(2022)

Motion behaviours 
recognition

1 009 videos contain-
ing 2 270 250 frames EfficientNet

the behaviour recognition 
accuracy of the algorithm 

was 97.87%
Yin et al. (2020)

Feeding behaviour 
monitoring 

10 288 images were 
collected.

DenseResNet-YOLO 
(DRN-YOLO)

the precision, recall, mAP 
and F1 score of 97.16%, 

96.51%, 96.91% and 96.83%, 
were achieved respectively

Yu et al. (2022)

Mastitis detection

1 200 thermal images 
containing cow eyes 
or cow udders were 

collected

MobileNet, YOLO

average accuracy of 96.8% 
was obtained for key parts 
detection, and 83.33% for 

mastitis classification

Xudong et al. 
(2020)

Individual classifica-
tion of the thermal 
condition of dairy 
cows

3 732 thermal 
images were collected 

and multiplied to 
73 960 images

not specified the highest accuracy 
of 76% was achieved Pacheco et al. (2022)

Table 2 to be continued

be more complex and challenging than working 
with standardized data. Additionally, it may affect 
the scalability and interoperability of CNN models 
across different farms or regions, and it may af-
fect the validity and reliability of their predictions. 
Therefore, this can be addressed by collaboration 
between researchers, farmers and industry stake-
holders to share data and develop standardized data 
collection protocols to  improve the quality and 
consistency of data and help to develop more robust 
CNN models. The need for large and diverse data 
sets was also highlighted in multiple studies and 
it seemsto be one of the striking challenges to CNN 
applications. Gathering high-quality labelled data 
for training CNN can be challenging in the context 
of dairy herd management. Developing accurate 
and reliable CNN models requires a large and di-
verse data set of labelled images that capture a wide 
range of variations in cattle appearance, behaviour, 

and environment (Russakovsky et al. 2015; Riaboff 
et al. 2022). However, obtaining such data sets can 
be challenging,as it may require significant time 
and resources for data collection, labelling, and 
verification. Additionally, there may be  limited 
availability of labelled datasets, particularly in re-
gions or countries with smaller cattle populations 
or lower levels of technological development which 
can lead to poor performance of CNN models. The 
limited transferability of models across different 
populations and farming systems was identifiedas 
a third challenge.

In reviewed studies, it was identified that CNN 
models are usually trained on large data sets of la-
belled images, and they learn to recognize patterns 
and features that are specific to the images in the 
training dataset. However, these patterns and fea-
tures may not be generalizable to other popula-
tions or farming systems where the images have 
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and synthesizing the current state of knowledge: 
It provides a comprehensive and up-to-date over-
view of the applications of CNN in cattle farming. 
Several potential applications of CNN in cattle 
farming, including disease detection, behaviour 
analysis, and feed optimization were identified. 
(2) Overview of CNN architectures: it provided 
an overview of the most common CNN architec-
tures used in cattle farming and their performance. 
The basic concepts of several CNN architectures, 
including YOLO, ResNet, VGGNet, DenseNet, 
MobileNet, Xception, and Inception, that are com-
monly used in cattle farming applications were 
described. (3) Identifying limitations and chal-
lenges: This review identified several limitations 
and challenges related to the application of CNNs 
in cattle farming, including the need for large and 
diverse datasets, lack of standardization in data 
collection and processing, and limited transfer-
ability of models. (4) Providing recommendations 
for future research: This review provided recom-
mendations for future research to overcome the 
challenges and improve the effectiveness and effi-
ciency of CNN applications in cattle farming. These 
recommendations include developing standardized 
data collection and processing protocols, enhanc-
ing the transferability of models across different 
populations and farming systems, and exploring 
the potential of using transfer learning and other 
techniques to reduce the need for large datasets. 
Finally, it is worth mentioning that the applica-
tion of artificial intelligence methods in livestock 
(among which CNN is included) requires multi-
disciplinary collaborations and Industry involve-
ment among computer science and animal science 
researchers to pool their knowledge together for 
enriched research and prevent the issues which 
may arise from the knowledge, time, and resources 
limitations from single disciplines.

The review highlights the potential benefits 
of CNN in enhancing the monitoring and man-
agement of animal health and productivity in cattle 
production. However, the limitations and chal-
lenges identified in the review indicate that further 
research and developments are needed to address 
the issues of standardization, data availability, and 
transferability requirements of CNN applications 
in cattle production.

The findings of this review could inform the de-
velopment of more effective and context-specific 
CNN models that could contribute to the sustain-

different characteristics, such as different breeds 
of cattle, lighting conditions, or environmental 
factors (Alzubaidi et al. 2020). CNN models de-
veloped for one population or  farming system 
may not be suitable for another due to differences 
in genetics, management practices, and environ-
mental factors. This limited transferability of mod-
els canbe a challenge for the practical application 
of CNN in cattle herd management, health and 
productivity,as it requires developing and fine-
tuning models for specific populations and farming 
systems, which can be time-consuming and expen-
sive (Bloch et al. 2023). Additionally, it can limit 
the scalability of CNN models in different regions 
and countries, and it may affect the accuracy and 
reliability of their predictions. The limited transfer-
ability of models across different populations and 
farming systems underscores the need for more 
research to develop context-specific models that 
are tailored to the unique characteristics of differ-
ent cattle populations and farming systems.

Besides the above-mentioned major challenges, 
other specific challenges were also identified tak-
ing into account the specific applications of CNN 
addressing the issues directly related to herd man-
agement, health and productivity of dairy cows. 
These include the real-time monitoring of dairy 
cows’ health and productivity which requires ad-
dressing challenges related to processing speed, 
hardware, and power consumption. On the other 
side, interpretability, and trust of CNN-based deci-
sions in a way that farmers and stakeholders can 
understand, and trust, is crucial for the successful 
adoption of these technologies in herd manage-
ment. Another challenge concerns the integration 
of CNN-based applications into existing herd man-
agement and productivity systems, which might use 
traditional methods, in terms of compatibility and 
data integration. Above all, collaborations between 
researchers, dairy farmers, veterinarians, and tech-
nology developers to ensure that CNN applications 
align with the practical needs and realities of the 
dairy industry is strongly encouraged.

CONCLUSION

This systematic literature review provided several 
contributions that can advance the knowledge and 
understanding of the applications of CNN in cat-
tle production. These include: (1) Identifying 
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able intensification of cattle farming and improve 
the livelihoods of farmers and the welfare of ani-
mals. Moreover, CNNs offer transformative po-
tential in revolutionizing dairy farming practices. 
By leveraging advanced technologies like CNN for 
image analysis, dairy farmers can enhance herd 
management, monitor cow health, optimize pro-
ductivity, and ultimately improve the overall sus-
tainability and efficiency of dairy operations. These 
advancements can lead to a significant positive im-
pact on the dairy industry, ensuring the welfare 
of cows and the economic viability of dairy farms.
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