Czech J. Anim. Sci., 2020, 65(12):445-453 | DOI: 10.17221/83/2020-CJAS

The use of genomic data and imputation methods in dairy cattle breedingReview

Anita Klímová ORCID...*,1,2, Eva Kašná2, Karolína Machová1, Michaela Brzáková2, Josef Přibyl2, Luboš Vostrý1
1 Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
2 Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague - Uhříněves, Czech Republic

The inclusion of animal genotype data has contributed to the development of genomic selection. Animals are selected not only based on pedigree and phenotypic data but also on the basis of information about their genotypes. Genomic information helps to increase the accuracy of selection of young animals and thus enables a reduction of the generation interval. Obtaining information about genotypes in the form of SNPs (single nucleotide polymorphisms) has led to the development of new chips for genotyping. Several methods of genomic comparison have been developed as a result. One of the methods is data imputation, which allows the missing SNPs to be calculated using low-density chips to high-density chips. Through imputations, it is possible to combine information from diverse sets of chips and thus obtain more information about genotypes at a lower cost. Increasing the amount of data helps increase the reliability of predicting genomic breeding values. Imputation methods are increasingly used in genome-wide association studies. When classical genotyping and genome-wide sequencing data are combined, this option helps to increase the chances of identifying loci that are associated with economically significant traits.

Keywords: genomic breeding values; genomic selection; genotyping; microarray; SNP

Published: December 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Klímová A, Kašná E, Machová K, Brzáková M, Přibyl J, Vostrý L. The use of genomic data and imputation methods in dairy cattle breeding. Czech J. Anim. Sci. 2020;65(12):445-453. doi: 10.17221/83/2020-CJAS.
Download citation

References

  1. Bull Genomes Project [Internet]. [Australia]: DairyBio. 2012 - [cited 2020 Mar 29]. Available from: http://www.1000bullgenomes.com.
  2. Aguilar I, Misztal I, Johnson D, Legarra A, Tsuruta S, Lawlor T. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010 Feb;93(2):743-52. Go to original source... Go to PubMed...
  3. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016 Jan 5;17:81-92. Go to original source... Go to PubMed...
  4. Bauer J, Pribyl J, Vostry L. Contribution of domestic and Interbull records to reliabilities of single-step genomic breeding values in dairy cattle. Czech J Anim Sci. 2015 Mar;60(3):263-7. Go to original source...
  5. Berry DP, Kearney JF. Imputation of genotypes from lowto high-density genotyping platforms and implications for genomic selection. Animal. 2011 Jun;5(8):1162-9. Go to original source... Go to PubMed...
  6. Browning B, Browning S. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009 Feb 13;84(2):210-23. Go to original source... Go to PubMed...
  7. Browning B, Browning S. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics. 2013 Jun 1;194(2):459-71. Go to original source... Go to PubMed...
  8. Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics. 2018 Sep 6;19(1): [11 p.]. Go to original source... Go to PubMed...
  9. Carvalheiro R, Solomon B, Neves HR, Sargolzaei M, Schenkel FS, Utsunomiya YT, O'Brien AM, Solkner J, McEwan JC, Van Tassel CP, Sonstegard TS, Garcia JF. Accuracy of genotype imputation in Nelore cattle. Genet Sel Evol. 2014 Oct 10;46: [11 p.]. Go to original source... Go to PubMed...
  10. Cheung CY, Thompson EA, Wijsman EM. GIGI: An approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet. 2013 Apr 4;92(4):504-16. Go to original source... Go to PubMed...
  11. Christensen O, Lund M. Genomic prediction when some animals are not genotyped. Gen Sel Evol. 2010 Jan 27; 42(1): [8 p.]. Go to original source... Go to PubMed...
  12. Cooper TA, Wiggans GR, VanRaden PM. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle. J Dairy Sci. 2013 May;96(5):3336-9. Go to original source... Go to PubMed...
  13. Daetwyler H, Wiggans G, Hayes B, Woolliams J, Goddard M. Imputation of missing genotypes from sparse to high density using long-range phasing. Genetics. 2011 Sep 1;189(1):317-27. Go to original source... Go to PubMed...
  14. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brondum RF, Liao X, Djari A, Rodriguez SC, Grohs C, Esquerre D, Bouchez O, Rossignol MN, Klopp C, Rocha D, Fritz S, Eggen A, Bowman PJ, Coote D, Chamberlain AJ, Anderson C, VanTassell CP, Hulsegge I, Goddard ME, Guldbrandtsen B, Lund MS, Veerkamp RF, Boichard DA, Fries R, Hayes BJ. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and comferentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. PNAS. 2016 Jul 12;113(28):E3995-4004. Go to PubMed...
  15. Gurgul A, Sienko K, Zukowski K, Pawlina K, Bugno-Poniewierska M. Imputation accuracy of bovine spongiform encephalopathy-associated PRNP indel polymorphisms from middle-density SNPs arrays. Czech J Anim Sci. 2014 May;59(5):224-9. Go to original source...
  16. Hayes B, Chamberlain A, Goddard M. Use of markers in linkage disequilibrium with QTL in breeding programs. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production; 2006 Aug 13-18; Belo Horizonte, Minas Gerais, Brazil: Instituto Prociencia; 2006. p. 30-6.
  17. Hayes B, Bowman P, Chamberlain A, Goddard M. Invited review: Genomic selection in dairy cattle. J Dairy Sci. 2009a Feb;92(2):433-43. Go to original source... Go to PubMed...
  18. Hayes BJ, Visscher PM, Goddard ME. Increase accuracy of artificial selection by using the realized relationship matrix. Genet Res. 2009b Feb 17;91(1):47-60. Go to original source... Go to PubMed...
  19. Hickey J, Kinghorn BP, Tier B, van der Werf JHJ, Cleveland MA. A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation. Gen Sel Evol. 2012 Jun;44(9):1-11. Go to original source... Go to PubMed...
  20. Hirschhorn J, Daly M. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005 Feb 1;6(2):95-108. Go to original source... Go to PubMed...
  21. Howie BN, Donnelly P, Marchini J, Schork NJ. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009 Jun 19;5(6): [15 p.]. Go to original source... Go to PubMed...
  22. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3. 2011 Nov 1;1(6):457-70. Go to original source... Go to PubMed...
  23. Huang Y, Hickey JM, Cleveland MA, Maltecca C. Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost. Gen Sel Evol. 2012 July 31;44(1): [8 p.]. Go to original source... Go to PubMed...
  24. Jenko J, Wiggans GR, Cooper TA, Eaglen SAE, Luff WGL, plex traits in cattle. Nat Genet. 2014 Jul 13;46(8):858-65. Bichard M, Pong-Wong R, Woolliams JA. Cow genotyp Go to PubMed...
  25. Druet T, Georges M. A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics. 2010 Mar 1;184(3):789-98. Go to original source... Go to PubMed...
  26. Druet T, Macleod IM, Hayes B. Toward genomic prediction from whole-genome sequence data: Impact of sequencing design on genotype imputation and accuracy of prediction. Heredity. 2013 Apr 3;112(1):39-47. Go to original source... Go to PubMed...
  27. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawaniti K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencinc (GBS) approach for high diversity species. PloS One. 2011 May 4;6(5): [10 p.]. ing strategies for genomic selection in a small dairy cattle population. J Dairy Sci. 2017 Jan;100(1):439-52. Go to original source... Go to PubMed...
  28. Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JAL, Barris W, McClintock AE, McClintock S, Thomson PC, Tier B, Nicholas FW, Raadsma HW. A primary assembly of a bovine haplotype block map based on a 15,036-single-nucleotide polymorphism panel genotyped in Holstein-Friesian cattle. Genetics. 2007 Jun 1; 176(2):763-72. Go to original source... Go to PubMed...
  29. Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafnar T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K. Detection
  30. Frischknecht M, Pausch H, Bapst B, Signer-Hasler H, Flury C, Garrick D, Stricker C, Fries R, Gredler-Grandl B. Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss cattle. BMC Genomics. 2017 Dec 29;18(1): [10 p.]. Go to original source... Go to PubMed...
  31. Garcia-Ruiz A, Cole J, VanRaden P, Wiggans G, Ruiz-Lopez F, Van Tassell C. Changes in genetic selection difof sharing by descent, long-range phasing and haplotype imputation. Nat Genet. 2008 Aug 17;40(9):1068-75. Go to original source... Go to PubMed...
  32. Kranjcevicova A, Kasna E, Brzakova M, Pribyl J, Vostry L. Impact of reference population and marker density on accuracy of population imputation. Czech J Anim Sci. 2019 Oct;64(10):405-10. Go to original source...
  33. Larmer A, Sargolzaei M, Brito LF, Ventura RV, Schenkel FS. Novel methods for genotype imputation to whole-genome sequence and simple linear model to predict imputation accuracy. BMC Genet. 2017 Dec 27;18(1): [12 p.]. Go to original source... Go to PubMed...
  34. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010 Dec;34 (8):816-34. Go to original source... Go to PubMed...
  35. Meuwissen T, Hayes BJ, Goddard ME. Genomic selection: A paradigm shift in animal breeding. Anim Front. 2016 Jan 1;6(1):6-14. Go to original source...
  36. Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci. 2009 Sep; 92(9):4648-55. Go to original source... Go to PubMed...
  37. Misztal I, Aguilar I, Legarra A, Lawlor TJ. Choice of parameters for single-step genomic evaluation for type. In: ASAS Annual Meeting; 2010 Jul 11-15; Tolouse, France. [Tolouse, France]: ASAS; 2010. p. 533.
  38. Misztal I, Aggrey S, Muir W. Experiences with a single-step genome evaluation. Poult. 2013 Sep 1;92(9):2530-4. Go to original source... Go to PubMed...
  39. Nicolazzi EL, Biffani S, Jansen G. Short communication: Imputing genotypes using PedImpute fast algorithm combining pedigree and population information. J Dairy Sci. 2013 Apr;96(4):2649-53. Go to original source... Go to PubMed...
  40. Nicolazzi E, Picciolini M, Strozzi F, Schnabel R, Lawley C, Pirani A, Brew F, Stella A. SNPchiMp: A database to disentangle the SNPchip jungle in bovine livestock. BMC Genomics. 2014 Feb 11;15(1): [6 p.]. tion in Canadian beef populations. Proc Assoc Advmt Anim Breed Genet. 2013 Oct;20:344-7. Go to original source... Go to PubMed...
  41. Starkey M, Elaswarapu R. Genomics: Essential methods. Hoboken: Wiley; 2010. 360 p. Go to original source...
  42. van Binsbergen R, Bink MCAM, Calus MPL, van Eeuwijk FA, Hayes BJ, Hulsegge I, Veerkamp RF. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Gen Sel Evol. 2014 Jul 15;46(1): [13 p.]. Go to original source... Go to PubMed...
  43. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008 Nov;91(11):4414-23. Go to original source... Go to PubMed...
  44. VanRaden P, Van Tassell C, Wiggans G, Sonstegard T, Schnabel R, Taylor J, Schenkel F. Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009 Jan;92(1):16-24. Go to original source... Go to PubMed...
  45. VanRaden P, O'Connell J, Wiggans G, Weigel K. Genomic evaluations with many more genotypes. Gen Sel Evol. 2011 Mar 2;43(1): [11 p.]. Go to original source... Go to PubMed...
  46. VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB, Sonstegard TS, Connor EE, Winters M, van Kaam JBCHM, Valentini A, Van Doormaal BJ, Faust MA, Doak GA. Genomic imputation and evaluation using high-density Holstein genotypes. J Dairy Sci. 2013 Jan; 96(1):668-78. Go to original source... Go to PubMed...
  47. Walker EJ, Siminovitch KA. Primer: Genomic and proteomic tools for the molecular dissection of disease. Nat Clin Pract Rheumatol. 2007 Oct;3:580-9. Go to original source... Go to PubMed...
  48. Wang Y, Lin G, Li C, Stothard P. Genotype imputation methods and their effects on genomic predictions in cattle. Springer Sci Rev. 2016 Feb;4:79-98. Go to original source...
  49. Wang X, Su G, Hao D, Lund MS, Kadarmideen HN. Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations. J Anim Sci Biotechnol. 2020 Jan 7;11(1): [12 p.]. Go to original source... Go to PubMed...
  50. Weigel K. Genomic selection of dairy cattle: A review
  51. Robledo D, Palaiokostas C, Bargelloni L, Martinez P, Houston of methods, strategies, and impact. J Anim Breed Genet. R. Applications of genotyping by sequencing in aquaculture breedin and genetics. Rev Aquac. 2017 Feb;10:670-82. Go to original source... Go to PubMed...
  52. Sargolzaei M, Schenkel F, Jansen G, Schaeffer L. Extent of linkage disequilibrium in Holstein cattle in North America. J Dairy Sci. 2008 May;91(5):2106-17. 2017 Dec;1(1):1-15. Go to original source... Go to PubMed...
  53. Wiggans G, Cooper T, VanRaden P, Van Tassell C, Bickhart D, Sonstegard T. Increasing the number of single nucleotide polymorphisms used in genomic evaluation of dairy cattle. J Dairy Sci. 2016 Jun;99(6):4504-11. Go to original source... Go to PubMed...
  54. Sargolzaei M, Chesnais J, Schenkel F. A new approach for ef- Wiggans G, Cole J, Hubbard S, Sonstegard T. Genomic seficient genotype imputation using information from relatives. BMC Genomics. 2014 Jun 17;15(1): [12 p.]. Go to original source... Go to PubMed...
  55. Schaeffer L. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet. 2006 Aug;123(4): 218-23. Go to original source... Go to PubMed...
  56. Stachowicz K, Larmer S, Jamrozik J, Moore SS, Miller SP. Sequencing and genotypng for the whole genome seleclection in dairy cattle: The USDA experience. Annu Rev Anim Biosci. 2017 Feb;5(1):309-27. Go to original source... Go to PubMed...
  57. Zhang Z, Druet T. Marker imputation with low-density marker panels in Dutch Holstein cattle. J Dairy Sci. 2010 Nov;93(11):5487-94. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.