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Abstract: The inclusion of animal genotype data has contributed to the development of genomic selection. Ani-
mals are selected not only based on pedigree and phenotypic data but also on the basis of information about
their genotypes. Genomic information helps to increase the accuracy of selection of young animals and thus
enables a reduction of the generation interval. Obtaining information about genotypes in the form of SNPs (single
nucleotide polymorphisms) has led to the development of new chips for genotyping. Several methods of genomic
comparison have been developed as a result. One of the methods is data imputation, which allows the missing
SNPs to be calculated using low-density chips to high-density chips. Through imputations, it is possible to com-
bine information from diverse sets of chips and thus obtain more information about genotypes at a lower cost.
Increasing the amount of data helps increase the reliability of predicting genomic breeding values. Imputation
methods are increasingly used in genome-wide association studies. When classical genotyping and genome-wide
sequencing data are combined, this option helps to increase the chances of identifying loci that are associated
with economically significant traits.
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Introduction

In a conventional animal evaluation based only
on pedigree and phenotype information, the ac-
curacy of the average parental breeding value
(parent average) is too low to support intensive
selection of bulls at birth. Thus, bull selection is
usually done around the age of five years, when
the phenotypes of the daughters are already known
(Jenko et al. 2017). The potential goal of genomic

selection is to increase the accuracy of breeding
values at an early age. To achieve this goal, it is
necessary to genotype enough individuals that al-
ready have a phenotype record or have a phenotype
record for their offspring (Meuwissen et al. 2016).
If the reliability of the genomic breeding value is
sufficiently high, then the age selection threshold
for the parents of the future generation can be re-
duced, and the generation interval can be short-
ened. Shortening the generation interval could lead
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to a doubling of genetic gain over selection based
on conventional breeding values (Schaeffer 2006).

Genomic selection

Genomic selection has shaped modern breeding
programmes for dairy cattle and has contributed
significantly to increasing genetic gain for a variety
of economically significant traits (Hayes et al. 2009a;
VanRaden et al. 2009). An increase in genetic gain
can arise from a shorter generation interval, in-
creased intensity of selection, and greater precision
in the selection of animals for breeding (Schaeffer
2006). The most significant advantage of incor-
porating genomics into cattle breeding is mainly
for low hereditary traits which, after the inclusion
of genomic data, increase the reliability of the pre-
diction of breeding values (Garcia-Ruiz et al. 2016;
Wiggans et al. 2017). As molecular methods were
evolving, it was possible to include not only per-
formance data and pedigrees of animals but also
genome data in animal evaluation. Single nucleo-
tide polymorphisms (SNPs) can be used to estimate
the genetic regression coefficients of SNP markers
for individual properties and to determine the re-
lationships between individual animals. Therefore,
it is possible to calculate the genomic breeding
value (GEBV) of young animals with higher reli-
ability than was the case with the standard breed-
ing value prediction. These young individuals can
be subsequently used in breeding though no test
mating has occurred (Schaeffer 2006). Therefore,
biochips have been developed to allow farmers
to obtain information about the genotypes of ani-
mals. Chips exist in varying densities, with lower
density chips offered to reduce the cost. Imputation
of SNP markers is one of the key strategies to gener-
ate a common high density set of SNPs across all
animals (Zhang and Druet 2010). Single nucleo-
tide polymorphism information is most often used
to predict genomic values. By including genotypes,
it is possible to compile a matrix of realised rela-
tionships between individuals, based on the pro-
portions of the genome that are identical by descent
between two individuals. Replacing the relationship
matrix with the realised relationship leads to an in-
crease in the accuracy of breeding values, especially
in individuals who do not have any phenotypic data
(Hayes et al. 2009b). In pedigree matrix A, rela-
tionships are the expected sharing of the genome
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of two individuals. However, the realised relation-
ships often differ from this expectation because
the size of the genome is finite, and the loci are
connected (VanRaden 2008). These deviations are
the reason for increasing the accuracy of genomic
breeding values. These variations tend to be small,
but the smaller the relationship between individu-
als, the higher the coefficient of variation for their
actual relationship. The genomic relationship ma-
trix is thus an estimate of the correct proportion
of the genome shared between two individuals.
The G matrix is independent of the pedigree and
is estimated based on the SNP (Hayes et al. 2009b).
Statistical methods for GEBV prediction fall into
three basic categories. The first is BLUP (best linear
unbiased prediction) models, which typically use
SNPs to extend or replace family tree data to create
arelationship matrix. Another category is Bayesian
regression models, which assume that the effects
of SNP markers are sampled from the distribution
or a mixture of several distributions. The last cat-
egory is machine learning algorithms that allow
highly flexible modelling of associations between
SNP markers and the desired trait (Weigel 2017).
The selection of animals is based on relation-
ships in the genomic relationship matrix, which
can be combined with phenotypic information
of non-genotyped animals using the BLUP model.
The most commonly used method is the multi-step
(ms) method GBLUP, which combines the previ-
ously mentioned sources of information. The main
problem with msGBLUP is that it does not consider
genomic preselection in the calculation of evalua-
tions based only on phenotypic data. In some cases,
this method is not optimal due to its complexity. It
is possible to use a more straightforward compu-
tational method called the single-step method or
ssGBLUP. This method uses a merged relationship
matrix H, which is formed by combining matrix G
and A in one step (Misztal et al. 2013). Matrix G rep-
resents the genomic relationship matrix for geno-
typed animals and matrix A represents the pedigree
relationship matrix. This procedure allows the use
of genetic markers to assess the entire population
(Misztal et al. 2009; Bauer et al. 2015). In routine
estimates of genomic breeding values, methods
based on BLUP models are the most commonly
used, namely, the multi-step method of estimat-
ing GEBV-GBLUP and the single-step method
of estimating GEBV-ssGBLUP (Misztal et al. 2009;
Aguilar et al. 2010; Christensen and Lund 2010).
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Development of genotyping

The incorporation of genomic selection into
the breeding of dairy cattle has caused a revolution
that has resulted in the development of new geno-
typing technologies. In 2000, a technology was de-
veloped testing a large number of SNPs at a relatively
low cost (Wiggans et al. 2016). As early as in 2005,
the MegAllele genotyping bovine 10 000-SNP chip
was offered to the public by ParAllele Bioscience,
which is now part of Affymetrix, which was designed
to detect 10 410 SNP markers (Khatkar et al. 2007).
Despite the high public interest in this product, this
chip was not suitable for genomic selection purposes,
because it did not have an appropriate distribution
of SNP markers across the genome. It was necessary
to create a better panel for SNP mapping based on
informative markers in each block of binding imbal-
ance across the genome (Hayes et al. 2006). For cap-
turing all linkage disequilibrium blocks in Holstein
cattle, it would be necessary to include 250 000
markers (Khatkar et al. 2007). In 2006, the United
States Department of Agriculture funded two proj-
ects to support the further development of a suit-
able genotyping panel. The first project focused
on creating an atlas of cow genes using the Solexa
sequencing platform, which is now part of Illumina.
The second project was aimed at the development
and testing of genotyping suitable for use in genomic
selection. Based on the results of these two proj-
ects and two research projects from the University
of Missouri, University of Alberta, and iBMC, a con-
sortium was established to develop a panel of 60 000
markers for genomic selection and association stud-
ies in cattle in cooperation with Illumina (Wiggans
et al. 2016). More than 58 000 SNPs were designed
for the BovineSNP50 BeadChip (illumina.com/
Documents/products/datasheets/datasheet_bovine_
snp50.pdf). This chip was officially released com-
mercially in December 2007 and it offered detection
of 54 001 SNPs. In July 2010, Illumina released two
new chips: the Bovine3K detecting 2 900 SNPs
(illumina.com/Documents/products/datasheets/
datasheet_bovine3k.pdf) and the BovineHD chip
designed to detect 777 962 SNPs (illumina.com/
Documents/products/datasheets/datasheet_bo-
vineHD.pdf). In 2011, [llumina released a BovineLD
chip for detecting 6 909 SNPs, which was a vast im-
provement over the Bovine3K chip. This was due
to the ability to analyse large amounts of data while
using the same chemistry as in the BovineSNP50
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BeadChip (Wiggans et al. 2016). The development
of this technology has dramatically increased the de-
mand for chips of varying density (Nicolazzi et al.
2014). The BovineSNP50 BeadChip is undoubt-
edly one of the most widely used commercial chips
for cattle genotyping from the Illumina company.
The third version of this chip is currently available,
which offers detection of 53 714 SNPs that are
evenly distributed throughout the cattle genome
(illumina.com/Documents/products/datasheets/
datasheet_bovine_snp50.pdf). Other major pro-
ducers of chips for genotyping of cattle are Zoetis,
Neogen and Thermo Fisher. Zoetis offers a 50K
chip for cattle genotyping and Neogen offers GGP
Bovine 50K (50 000 SNP) and GGP Bovine 150K
(150 000 SNP) chips (www.neogen.com/solutions/
genomic-profiles). The above-mentioned chips are
based on the Illumina BovineSNP50 BeadChip. Both
companies are significantly involved in genotyping
the US cattle population. Another of these com-
panies, Thermo Fisher, offers Affymetrix platform
chips for cattle genotyping: the Axiom Bovine Ge-
notyping array (> 67 000 SNP) and the Axiom
Genome-Wide BOS array (648 855 SNP) (assets.
thermofisher.com/TFS-Assets/GSD/brochures/ax-
iom-genotyping-arrays-agrigenomics-brochure.pdf).

Genotyping methods

The first method of genotyping is the microarray
method, which is the basis of commercial chips.
Analysis and evaluation of the DNA chip is based
on the binding of the oligonucleotide probe by co-
valent binding to the plate. The DNA sample to be
evaluated must first be purified by electrophoresis
or PCR and then converted to cDNA by reverse
transcription. Subsequently, PCR amplification is
performed to ensure a sufficient sample volume.
In the next step, several molecules of a fluorescent
substance are attached to each molecule which
can then be detected. The result of this process
is a sample containing single-stranded DNA
that is labelled with a detectable substance. After
contact with the chip, the sample is hybridized
with complementary probes and subsequently
flushed to cleanse molecules that did not attach
to the probes with sufficient hydrogen bridges.
The sample is then evaluated by laser. The dyes
present on the sample emit the light of a specific
wavelength. The number of complementary mol-
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ecules in the sample can be determined by the
light emitted (Starkley and Elaswarapu 2010).
There are two different genotyping technolo-
gies provided by Illumina and Affymetrix. There
is also an increasing interest in custom-made
chips that are not commercially available or re-
quire consent to be used. The advantage of these
chips is primarily the inclusion of additional SNP
mutations depending on the population (muta-
tions for various diseases, etc.) (Nicolazzi et al.
2014). In the Affymetrix chip, DNA samples are
digested with restriction enzymes into differ-
ent lengths. Adapters are connected to the ends
of the sections. Sections of 250—1 000 base pairs
are amplified, fluorescently labelled, and hybrid-
ized to the probes. The chips are then evaluated
by laser, and a specialized computer program is
used to determine the genotype. In the Illumina
chip, DNA samples are amplified and then di-
gested into smaller parts. These parts hybridize
to specific “beads” of the chip, each carrying two
probes. Thus, it is possible to genotype both al-
leles at the SNP locus simultaneously. DNA is
ligated at the labelled base site upstream of the
SNP locus. Elongated samples are stained and
evaluated by laser, and genotypes are determined
in a specialized computational program (Walker
and Siminovitch 2007).

Genotyping by sequencing (GBS) is a new tech-
nology for genotyping that uses restriction endo-
nucleases to cleave genomic DNA. Thus, it uses
the sequential cleavage of DNA fragments and is
an efficient method for the discovery of SNP mark-
ers (Elshire et al. 2011). Genotyping by sequenc-
ing methods do not consider previous information
about the reference genome of the studied species
(Robledo et al. 2017). In addition to the discovery
of new SNP markers, GBS techniques have revo-
lutionized evolutionary genomics (Andrews et al.
2016). Genotyping by sequencing techniques have
a broad weakness in missing genotypes, and there-
fore data imputation is necessary for using GBS
(Wang et al. 2020).

Imputation methods

Genotype imputation means adding missing SNP
markers to increase the amount of genomic infor-
mation and reduce the cost of livestock genotyp-
ing. Imputation is mostly used for the enlargement
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of genomic data of animals that are genotyped on
low-density chips. For this, genomic information
on animals from the reference population which are
genotyped in a higher-density panel is important
(Sargolzaei et al. 2014).

Imputation methods used in livestock breed-
ing are generally divided into two groups: linkage
disequilibrium (LD) techniques using Impute2
(Howie etal. 2009), Beagle (Browning and Browning
2009), Mach (Li et al. 2010) and pedigree and seg-
regation-based techniques (LE) or a combination
of pedigree, segregation and population informa-
tion which typically include Alphalmpute (Hickey
et al. 2012), Findhap (VanRaden et al. 2011),
DAGPHASE (Druet and Georges 2010), FImpute
(Sargolzaei et al. 2008; 2014) and PedImpute
(Nicolazzi et al. 2013). Population-based impu-
tation methods provide certain benefits. One
of them is that information about pedigrees is not
very often available or is very often incomplete.
These methods provide more accurate imputation
for common SNP variants than pedigree imputa-
tion (Cheung et al. 2013). Another disadvantage
may be that some methods based on pedigree
data require the availability of dense genotypes
for all close ancestors (Hickey et al. 2012). All ex-
isting imputation methods are essentially based
on searching similar haplotypes of the observed
genotype of animals on the reference panel
(Howie et al. 2009). The most widely used are
Beagle (Browning and Browning 2009) based on
the Hidden Markov models (HMM) and FImpute
(Sargolzaei et al. 2014) which imputes based on
the Overlapping sliding windows model (OSW).
The accuracy of imputation is influenced by sev-
eral factors such as the number and composition
of individuals in the reference group, the effective
population size, the allele frequencies and the dif-
ferences between the densities of the reference
and imputed genotypes (Sargolzaei et al. 2014).

A significant factor is also the quality of the
genotype, which is evaluated according to the call
rate. The genotype call rate refers to the fraction
of called SNPs from the total number of SNPs of
a given chip. A quality genotype is determined if
the call rate reaches a value between 90% and 95%.
Accurate input genotypes are an essential condition
for correct imputation. Errors in genotypes affect
phasing and imputation, resulting in the genotype
of the offspring not corresponding to the parental
haplotypes (Cooper et al. 2013).
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Beagle and Hidden Markov model

Beagle is imputation software that was created
by Brian Browning at the University of Washington.
It was created to work with genotypes, their phas-
ing and imputation of missing markers. Beagle uses
the localized haplotype cluster model in the impu-
tation model, which is referred to as the Hidden
Markov model (Browning and Browning 2013).
The model assumes for each marker a variable num-
ber of hidden states representing local clusters. Each
cluster represents only one possible allele. By detect-
ing the length of IBDs (identical by descent) shared
among individuals, the number of hidden states -
clusters is lower, thus speeding up the calculations
(Wang et al. 2016). Identification of IBD segments
proceeds in two steps. In the first step, candidate
IBD segments are detected using linear approaches,
and in the second step, the IBD segments are refined
to obtain identical haplotypes based on probability
analysis (Browning and Browning 2013).

FImpute and Overlapping sliding windows
model

FImpute is an efficient tool based on the deter-
ministic method of genotype phasing and genotype
imputation using long haplotypes (Wang et al. 2016).
The length of the haplotypes shared between two
individuals on a particular chromosome depends
on the number of recombinations that occur across
the family tree. This number may be known for close-
ly related individuals who share long haplotypes, but
it may be unknown for remotely related individuals
who share shorter haplotypes. Thus, it is possible
to capture family relationships even without pedi-
gree data by searching for long shared haplotypes
(Kong et al. 2008). However, the use of pedigree data
leads to a more accurate genotype phasing, especially
if the chip we impute is of lower density (Daetwyler
et al. 2011). The importance of pedigree informa-
tion decreases with increasing chip density, as more
markers increase the recombination resolution and
increase the likelihood of finding the correct shared
haplotypes (Sargolzaei et al. 2008). The family-based
imputation algorithm is iterative and accumulates
information by browsing the family tree in each it-
eration. If both parents are genotyped, and their hap-
lotypes are assembled, imputation occurs directly.
The offspring haplotypes are compared to the parent
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haplotypes, and the missing values are added based
on the identified match. If one parent is not geno-
typed, the nearest genotyped ancestor is searched
for based on the pedigree. Genotyped parents have
no pedigree as their ancestry genotypes no longer
provide the necessary information (Sargolzaei et al.
2014). Haplotypes tend to shorten over generations,
mainly due to recombination and mutations. Long
shared haplotypes are the result of recent recombina-
tions and mutations and can only be observed among
close relatives (Hirschhorn and Daly 2005). The ac-
curacy of haplotype matching between individuals
is influenced by their length; the longer the shared
haplotype, the more accurate the match (Kong et al.
2008). If more than one haplotype match is found,
a higher frequency match is considered the most
likely match. Therefore, the search for matching hap-
lotypes using OSW is a suitable method for genotyp-
ing and missing marker imputation (Sargolzaei et al.
2014). Using this method, a chromosome or a select-
ed part of the genome is first passed through a large
window many times, which gradually diminishes
with each new one, while the size of the window is
always the same in one run. The maximum window
size is set to 1 000 SNPs and the minimum to two
SNPs. If pedigree information is available, individu-
als with a high-density genotype and a phased geno-
type based on pedigree information can be included
in the reference population to improve imputation
accuracy. This is a combination of population im-
putation and pedigree-based imputation methods
(Sargolzaei et al. 2014).

Verification of imputation accuracy

Several factors influence imputation accuracy.
In addition to the quality of individual genotypes,
the size of the reference population of genotyped
animals and the number of missing SNPs play a sig-
nificant role. How these two major factors affect
imputation accuracy was described in the study
by Kranjcevicova et al. (2019). Where several sim-
ulation calculations were performed to monitor
the imputation accuracy with varying sizes of the ref-
erence population and the number of missing SNPs,
the accuracy itself is monitored using the genotype
masking method. This method consists of artificial-
ly generating the missing SNP value as described
by Carvalheiro et al. (2014) and Gurgul et al. (2014).
The masked SNPs are then imputed, and the im-
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putation accuracy is calculated as the correlation
between the original SNP value before masking and
the SNP value after imputation according to the fol-
lowing formula (Kranjcevicova et al. 2019):

cov (SNPBD, SNPAI) (1)
OsNPy, X OsNP,,

Imputation accuracy =

where:
SNPgp - the single nucleotide polymorphism code
before masking;

SNP,; - thesingle nucleotide polymorphism code after
the imputation;
o — standard deviation.

Another precision parameter is the percentage
of imputation success, as a percentage of match-
es between the original and the imputed SNP
(Carvalheiro et al. 2014). In general, studies
of imputation accuracy suggest that the reference
population size plays a significant role; if it is suf-
ficient, the accuracy is high despite a larger per-
centage of missing markers (Carvalheiro et al. 2014;
Kranjcevicova et al. 2019).

Impact of imputation methods in genomic
selection

The method of data imputation was created
to compare chips with different density. The main
goal of this calculation procedure is to enable all
chips to provide a common set of SNP. Berry and
Kearney (2011) reported that it is possible to use
commercial low-density chips from Illumina
and then impute them to a denser Illumina 50K
BeadChip. In this case, imputation will facili-
tate the reduction of genotyping costs and increase
the number of genotyped animals in the popula-
tion. The increased amount of genomic infor-
mation has also helped to increase the reliability
of the prediction of breeding values. Denser chips,
such as the BovineHD Genotyping BeadChip,
are designed to analyse up to 777 000 SNPs (il-
lumina.com/Documents/products/datasheets/
datasheet_bovineHD.pdf). The original intention
of imputation meant cost savings for genotyping
the population. The strategy was to genotype a part
of the population on LD chips and then impute them
to a reference population genotyped on a higher
density chip. This approach was to maximize genetic
gain while minimizing the cost. However, the cost
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of genotyping and the accuracy of imputation are
affected by several factors. The accuracy of the im-
putation itself and the possible loss of information
due to incomplete imputation may result in a less
accurate estimate of Mendelian sampling but it
does not affect the parental average. A study on
the strategy of cheap genotyping of pig populations
reported a reduction in the cost of genotyping from
120 USD (price of HD chip) to a price in the range
of 20.58-34.84 USD per individual if imputation is
used (Huang et al. 2012). Imputation is important,
especially in studies where it is necessary to increase
the size of the population genotyped on HD chips
or the sequencing population (Larmer et al. 2017).
Information from the 1 000 bull genomes project,
which gathers a set of sequenced bulls across cattle
breeds, is commonly used to find given haplotypes
and sequences (Daetwyler et al. 2014). This project
started in 2012 using a database containing 234 se-
quenced bulls from three breeds of cattle and it
has now been enlarged to 3 800 animals and more
than 150 breeds of cattle (1000 Bull Genomes Project
2012), mainly due to imputation from SNP chips.
The project found that the relatively accurate im-
putation of sequence genotypes can be achieved, es-
pecially for SNPs with a high minor allele frequency
or for common allele variants. In SNPs with a low
minor allele frequency, i.e., rare alleles, the impu-
tation accuracy was low (Meuwissen et al. 2016).
Druet et al. (2013), based on simulation calculations,
mentioned the possibility of increasing the accuracy
of the imputation of rare alleles in the case of se-
quencing a large number of ancestors to maximize
the number of haplotypes available in the reference
population. Another fact influencing the accuracy
of imputation in this case is the selection of ani-
mals for sequencing into a reference population.
Individuals from the reference population must be
genetically more closely related to other animals
in the population, especially those to be imputed
from SNP chips (Stachowicz et al. 2013). Better re-
sults of imputation accuracy have also been shown
in the case of a two-step approach, where commonly
used 50K chips are not directly imputed to the se-
quenced genotype. They are first imputed to 800K
chips, from which they are imputed to sequences
in the next phase (van Binsbergen et al. 2014).
Higher imputation accuracy in the two-step ap-
proach was also observed in the study by VanRaden
et al. (2013), who performed an imputation from
3000 SNPs (3K) to 777 000 SNPs (HD). Fifty thousand
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SNPs were used as an intermediate step. Compared
to direct imputation from 3K to HD, the accuracy
increased by 2% (VanRaden et al. 2013). According
to VanRaden et al. (2013), the incorporation of the
HD chip into the genomic evaluation of animals
brings on average the only 0.4% increase in reliability
using the 50K chip. High density chips provide op-
portunities in genome-wide association studies. Due
to the higher density, it is possible to detect SNPs
closer to the quantitative trait locus (QTL) (Howie
et al. 2011). A combination of data obtained from
classical genotyping and whole-genome sequencing
data is increasingly used to find QTLs in relation
to production traits. Imputation of these data often
helps to identify causative mutations for monogenic
traits (Daetwyler et al. 2014). The use of whole-ge-
nome sequencing data may lead to higher accuracy
in association studies as well as better predictions
of genomic breeding values. However, it is neces-
sary to have large data sets with sequenced animal
genomes. Imputation from classical SNP chips such
as the Illumina Bovine50K BeadChip and Illumina
BovineHD BeadChip to whole-genome sequences
represents a cheaper data option (van Binsberger
etal. 2014). Frichknecht et al. (2017) detected three
QTLs for early and late lactation fat content due
to data imputation when combining SNP chip infor-
mation and whole-genomic sequencing information.
Genomic data is also widely used in studies of com-
plex health traits. In mastitis, which is one of the
costliest diseases in milk production, 22 QTLs were
identified using imputation methods. These QTLs
explained 14% of the variability of breeding values
for resistance to clinical mastitis (Cai et al. 2018).

CONCLUSION

The use of genomic data in the breeding of dairy
cattle has helped to increase genetic gain. Genomic
data through SNP information has become an in-
tegral part of breeding work, and the analysis is
continually improving. There is a constant increase
in the genotyped animals and new chips that offer
new possibilities of disease detection and improve-
ments in verifying the origin of animals. New meth-
ods of comparing genomic data such as missing SNP
imputation offer new possibilities of making the ge-
notyping technology less expensive. It is not possible
to replace quality genotyping with imputation, as it
only serves as a complement to the general geno-
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typing of the population, which leads to an increase
in the amount of genomic data in animal evaluation
and thus also contributes to higher reliability of the
prediction of genomic breeding values. The method
of data imputation has also become a useful tool
in whole-genome association studies, where data
from classical SNP chips and whole-genome se-
quencing are combined. It is thus possible to increase
the chances of identifying essential loci that are re-
lated to economically significant production traits.
Currently, the cost of genotyping has dropped sig-
nificantly. The use of LD chips is gradually losing its
significance. The price of genotyping on 50K chips
is comparable to the original price of LD chips.
Therefore, imputation becomes very important when
adding SNPs to HD chips or sequences. Due to impu-
tation, it is possible to use older genotypes of animals
that cannot be genotyped again.
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