Czech J. Anim. Sci., 2019, 64(9):377-386 | DOI: 10.17221/120/2019-CJAS

Genotype imputation strategies for Portuguese Holstein cattle using different SNP panelsOriginal Paper

Alessandra Alves Silva1, Fabyano Fonseca Silva1, Delvan Alves Silva1, Hugo Teixeira Silva1, Cláudio Napolis Costa2, Paulo Sávio Lopes1, Renata Veroneze1, Gertrude Thompson3,4, Julio Carvalheira*,3,4
1 Department of Animal Science, Federal University of Viçosa, Viçosa, Brazil
2 Embrapa Dairy Cattle, Juiz de Fora, Brazil
3 Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, Porto, Portugal
4 Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal

Although several studies have investigated the factors affecting imputation accuracy, most of these studies involved a large number of genotyped animals. Thus, results from these studies cannot be directly applied to small populations, since the population structure affects imputation accuracy. In addition, factors affecting imputation accuracy may also be intensified in small populations. Therefore, we aimed to compare different imputation strategies for the Portuguese Holstein cattle population considering several commercially available single nucleotide polymorphism (SNP) panels in a relatively small number of genotyped animals. Data from 1359 genotyped animals were used to evaluate imputation in 7 different scenarios. In the S1 to S6 scenarios, imputations were performed from LDv1, 50Kv1, 57K, 77K, HDv3 and Ax58K panels to 50Kv2 panel. In these scenarios, the bulls in 50Kv2 were divided into reference (352) and validation (101) populations based on the year of birth. In the S7 scenario, the validation population consisted of 566 cows genotyped with the Ax58K panel with their genotypes masked to LDv1. In general, all sample imputation accuracies were high with correlations ranging from 0.94 to 0.99 and concordance rate ranging from 92.59 to 98.18%. SNP-specific accuracy was consistent with that of sample imputation. S4 (40.32% of SNPs imputed) had higher accuracy than S2 and S3, both with less than 7.59% of SNPs imputed. Most probably, this was due to the high number of imputed SNPs with minor allele frequency (MAF) < 0.05 in S2 and S3 (by 18.43% and 16.06% higher than in S4, respectively). Therefore, for these two scenarios, MAF was more relevant than the panel density. These results suggest that genotype imputation using several commercially available SNP panels is feasible for the Portuguese national genomic evaluation.

Keywords: dairy cattle; genomic evaluation; imputation accuracy

Published: September 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Silva AA, Silva FF, Silva DA, Silva HT, Costa CN, Lopes PS, et al.. Genotype imputation strategies for Portuguese Holstein cattle using different SNP panels. Czech J. Anim. Sci. 2019;64(9):377-386. doi: 10.17221/120/2019-CJAS.
Download citation

Supplementary files:

Download file120-2019 Carvalheira SOM final.pdf

File size: 258.46 kB

References

  1. Berry D.P., O'Brien A., Wall E., McDermott K., Randles S., Flynn P., Park S., Grose J., Weld R., McHugh N. (2016): Inter- and intra-reproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms. Genetics Selection Evolution, 48, 1-5. Go to original source... Go to PubMed...
  2. Boison S.A., Santos D.J.A., Utsunomiya A.H.T., Carvalheiro R., Neves H.H.R., O'Brien A.M.P., Garcia J.F., Solkner J., da Silva M.V.G.B. (2015): Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. Journal of Dairy Science, 98, 4969-4989. Go to original source... Go to PubMed...
  3. Carvalheiro R., Boison S.A., Neves H.H.R., Sargolzaei M., Schenkel F.S., Utsunomiya Y.T., O'Brien A.M.P., Solkner J., McEwan J.C., Van Tassell C.P., Sonstegard T.S., Garcia J.F. (2014): Accuracy of genotype imputation in Nelore cattle. Genetics Selection Evolution, 46, 1-11. Go to original source... Go to PubMed...
  4. Chud T.C.S., Ventura R.V., Schenkel F.S., Carvalheiro R., Buzanskas M.E., Rosa J.O., de Alvarenga Mudadu M., da Silva M.V.G.B., Mokry F.B., Marcondes C.R., Regitano L.C.A., Munari D.P. (2015): Strategies for genotype imputation in composite beef cattle. BMC Genetics, 16, 1-10. Go to original source... Go to PubMed...
  5. Daetwyler H.D., Calus M.P.L., Pong-Wong R., de los Campos G., Hickey J.M. (2013): Genomic prediction in animals and plants: Simulation of data, validation, reporting, and benchmarking. Genetics, 193, 347-365. size and available ancestor genotypes on imputation of Mexican Holstein genotypes. Journal of Dairy Science, 98, 3478-3484. Go to original source... Go to PubMed...
  6. Goktas A., Isci O. (2011): A comparison and normality test of some measures of association via simulation for rectangular doubly ordered cross tables. Metodoloski Zvezki, 8, 17-37.
  7. Gu Z., Gu L., Eils R., Schlesner M., Brors B. (2014): circlize implements and enhances circular visualization in R. Bioinformatics, 30, 2811-2812. Go to original source... Go to PubMed...
  8. Heidaritabar M., Calus M.P.L., Vereijken A., Groenen M.A.M., Bastiaansen J.W.M. (2015): Accuracy of imputation using the most common sires as reference population in layer chickens. BMC Genetics, 16, 1-14. Go to original source... Go to PubMed...
  9. Hickey J.M., Crossa J., Babu R., de los Campos G. (2012): Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Science, 52, 654-663. Go to original source...
  10. Hill W.G., Robertson A. (1968): Linkage disequilibrium in finite populations. TAG Theoretical and Applied Genetics, 38, 226-231. Go to original source... Go to PubMed...
  11. Jattawa D., Elzo M.A., Koonawootrittriron S., Suwanasopee T. (2016): Imputation accuracy from low to moderate density single nucleotide polymorphism chips in a Thai multibreed dairy cattle population. Asian-Australasian Journal of Animal Sciences, 29, 464-470. Go to original source... Go to PubMed...
  12. Khatkar M.S., Moser G., Hayes B.J., Raadsma H.W. (2012): Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics, 13, Article No. 538. Go to original source...
  13. Larmer S.G., Sargolzaei M., Schenkel F.S. (2014): Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. Journal of Dairy Science, 97, 3128-3141. Go to original source... Go to PubMed...
  14. Misztal I., Tsuruta S., Lourenco D.A.L., Aguilar I., Legarra A., Vitezica Z.G. (2014): Manual for BLUPF90 Family of Programs. University of Georgia, Athens, USA. Available at http://nce.ads.uga.edu/wiki/doku.php?id=application_ programs (accessed Feb 15, 2018).
  15. Nicolazzi E.L., Biffani S., Biscarini F., Orozco P., Wengel T., Caprera A., Nazzicari N., Stella A. (2015): Software solutions for the livestock genomics SNP array revolution. Animal Genetics, 46, 343-353. Go to original source... Go to PubMed...
  16. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. (2007): PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559-575. Go to original source... Go to PubMed...
  17. R Core Team (2018): R: A Language and Environment for Statistical Computing. R Foundation for Statistical
  18. Garcia-Ruiz A., Ruiz-Lopez F.J., Wiggans G.R., Van Tassell C.P., Montaldo H.H. (2015): Effect of reference population Computing, Vienna, Austria. Available at https://www.Rproject.org/ (accessed May 10, 2018).
  19. Salem M.M.I., Thompson G., Chen S., Beja-Pereira A., Carvalheira J. (2018): Linkage disequilibrium and haplotype block structure in Portuguese Holstein cattle. Czech Journal of Animal Science, 63, 61-69. Go to original source...
  20. Sargolzaei M., Chesnais J.P., Schenkel F.S. (2014): A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15, Article No. 478. Go to original source...
  21. VanRaden P.M. (2008): Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423. Go to original source... Go to PubMed...
  22. VanRaden P.M., O'Connell J.R., Wiggans G.R., Weigel K.A. (2011): Genomic evaluations with many more genotypes. Genetics Selection Evolution, 43, 1-11. Go to original source... Go to PubMed...
  23. VanRaden P.M., Null D.J., Sargolzaei M., Wiggans G.R., Tooker M.E., Cole J.B., Sonstegard T.S., Connor E.E., Winters M., van Kaam J.B.C.H.M., Valentini A., Van Doormaal B.J., Faust M.A., Doak G.A. (2013): Genomic imputation and evaluation using high-density Holstein genotypes. Journal of Dairy Science, 96, 668-678. Go to original source... Go to PubMed...
  24. Ventura R.V., Lu D., Schenkel F.S., Wang Z., Li C., Miller S.P. (2014): Impact of reference population on accuracy of imputation from 6K to 50K single nucleotide polymorphism chips in purebred and crossbreed beef cattle. Journal of Animal Science, 92, 1433-1444. Go to original source... Go to PubMed...
  25. Ventura R.V., Miller S.P., Dodds K.G., Auvray B., Lee M., Bixley M., Clarke S.M., McEwan J.C. (2016): Assessing accuracy of imputation using different SNP panel densities in a multi-breed sheep population. Genetics Selection Evolution, 48, 1-20. Go to original source... Go to PubMed...
  26. Wang Y., Lin G., Li C., Stothard P. (2016): Genotype imputation methods and their effects on genomic predictions in cattle. Springer Science Reviews, 4, 79-98. Go to original source...
  27. Zhou L., Heringstad B., Su G., Guldbrandtsen B., Meuwissen T.H.E., Svendsen M., Grove H., Nielsen U.S., Lund M.S. (2014): Genomic predictions based on a joint reference population for the Nordic Red cattle breeds. Journal of Dairy Science, 97, 4485-4496. Go to original source... Go to PubMed...
  28. Zimin A.V., Delcher A.L., Florea L., Kelley D.R., Schatz M.C., Puiu D., Hanrahan F., Pertea G., Van Tassell C.P., Sonstegard T.S., Marcais G., Roberts M., Subramanian P., Yorke J.A., Salzberg S.L. (2009): A whole-genome assembly of the domestic cow, Bos taurus. Genome Biology, 10, Article R42. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.