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Abstract: Although several studies have investigated the factors affecting imputation accuracy, most of these studies 
involved a large number of genotyped animals. Thus, results from these studies cannot be directly applied to small 
populations, since the population structure affects imputation accuracy. In addition, factors affecting imputation 
accuracy may also be intensified in small populations. Therefore, we aimed to compare different imputation strate-
gies for the Portuguese Holstein cattle population considering several commercially available single nucleotide poly-
morphism (SNP) panels in a relatively small number of genotyped animals. Data from 1359 genotyped animals were 
used to evaluate imputation in 7 different scenarios. In the S1 to S6 scenarios, imputations were performed from 
LDv1, 50Kv1, 57K, 77K, HDv3 and Ax58K panels to 50Kv2 panel. In these scenarios, the bulls in 50Kv2 were divided 
into reference (352) and validation (101) populations based on the year of birth. In the S7 scenario, the validation 
population consisted of 566 cows genotyped with the Ax58K panel with their genotypes masked to LDv1. In general, 
all sample imputation accuracies were high with correlations ranging from 0.94 to 0.99 and concordance rate rang-
ing from 92.59 to 98.18%. SNP-specific accuracy was consistent with that of sample imputation. S4 (40.32% of SNPs 
imputed) had higher accuracy than S2 and S3, both with less than 7.59% of SNPs imputed. Most probably, this was 
due to the high number of imputed SNPs with minor allele frequency (MAF) < 0.05 in S2 and S3 (by 18.43% and 
16.06% higher than in S4, respectively). Therefore, for these two scenarios, MAF was more relevant than the panel 
density. These results suggest that genotype imputation using several commercially available SNP panels is feasible 
for the Portuguese national genomic evaluation.

Keywords: dairy cattle; genomic evaluation; imputation accuracy

In practice, several studies in animal breeding 
with genomic data such as genomic prediction 
or genome-wide association studies (GWAS) use 
imputed data ( Jattawa et al. 2016; Wang et al. 
2016). Thus, imputation strategies have become 

an important approach to make efficient use of 
all available information. Moreover, there are sev-
eral commercial single nucleotide polymorphism 
(SNP) panels with different densities in dairy cattle 
(Nicolazzi et al. 2015) providing many genotypic 
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datasets that are routinely shared between coun-
tries to minimize the costs of genomic information, 
reinforcing the need and importance for reliable 
imputation strategies. 

Briefly, imputation refers to statistical and com-
putational tools applied to infer SNP genotypes 
which are not obtained from a low-density panel 
using information from a reference population 
genotyped with a higher density panel (Ventura 
et al. 2014). Several studies have investigated the 
factors affecting imputation accuracy in dairy cat-
tle population, such as the number of reference 
individuals, the relationship between reference 
population and target population, minor allele 
frequency (MAF), linkage disequilibrium (LD), 
and the difference between marker densities of 
the reference and imputed sets (Larmer et al. 
2014; Boison et al. 2015; Garcia-Ruiz et al. 2015). 
However, most of these studies involved a large 
number of genotyped animals using low-density 
panels derived from only an HD panel. Thus, results 
from these studies cannot be directly applied to 
small populations, since the population structure 
affects imputation accuracy. In addition, these 
factors affecting imputation accuracy may also 
be intensified in small populations. Therefore, we 
aimed to test different imputation strategies for 
Portuguese Holstein population considering several 
commercially available SNP panels with different 
densities in a small number of genotyped animals.

MATERIAL AND METHODS

Data from 1359 genotyped animals (793 bulls and 
566 cows) were used in this study. Of these, 50.85% 
were foreign bulls, mainly American and Canadian 
ones (82.63%), while 49.15% of the animals were 
Portuguese (83.83% cows and 16.17% bulls). In sum-
mary, the bulls were genotyped using different SNP 
panels: LDv1 (GeneSeek Genomic Profiler, Neogen 
Corp., Lincoln, USA), 50Kv1 and 50Kv2 (Bovine 
SNP50v.1 and Bovine SNP50v.2 BeadChips, Illu-
mina, San Diego, USA), 57K (USDA Illumina, San 
Diego, USA), 77K and HDv3 (GeneSeek Genomic 
Profiler, Neogen Corp., Lincoln, USA). The cows were 
genotyped using the Ax58K panel (Affymetrix, Santa 
Clara, USA). The numbers of genotyped animals by 
panel and year of birth are shown in Table 1 and the 
number of SNPs for each panel is shown in Table 2.

Marker positions and chromosomes in the map 
for each panel were standardized according to the 
UMD v3.1 assembly (Zimin et al. 2009). Quality 
control (QC) analyses for SNP and samples were 
done separately for each panel using PLINK v1.07 
(Purcell et al. 2007). In QC for samples, errors of 
sex disagreement were checked by heterozygosity 
on the X chromosome; animals with the call rate  
< 0.90 were discarded; parent–offspring pairs were 
tested for Mendelian inconsistencies; and deviations 
from heterozygosity were controlled by removing 
animals with ± 3 standard deviations. A total of 

Table 1. Number of genotyped animals by panel according to birth year

Birth year 50Kv2 LDv1 50Kv1 57K Ax58K1 77K HDv3
1966–2003 352 – 23 76 – 31 18
2004     9 –   6 – – –   6
2005     3 – 22 – – –   7
2006     7 – 25 – – –   8
2007     2 – 20 – – –   7
2008     5 – 25   1 – – 13
2009     6 1 15   2 – –   6
2010   23 3   8   1   71 – 11
2011   35 – – –   96 –   1
2012  10 – – – 166    3   1
2013 – – – – 193 – –
2014    1 – – –   39 – –
2015 – – – –     1 – –
Total 453 4 144 80 566 34 78

1females

https://www.agriculturejournals.cz/web/cjas/


379

Czech Journal of Animal Science, 64, 2019 (9): 377–386	 Original Paper

https://doi.org/10.17221/120/2019-CJAS

1530 animals were considered in QC, in which 11.2% 
were excluded, thus 1359 animals were effective for 
imputation analyses. In QC for SNPs, markers with 
the call rate < 0.95, minor allele frequency (MAF) 
< 0.02, and Hardy-Weinberg equilibrium with χ2 
lower than 10–6 were excluded. SNPs with positions 
unknown or located on sex chromosome were not 
considered in the analysis. The number of SNPs 
after QC for each panel is described in Table 2.

When using a diversity of genotype panels, mainly 
from different technologies (e.g., Illumina and 
Affymetrix), it is important to assess their consist-
ency by performing a population structure analysis. 
A genotype data set contained 3239 SNPs that 
were shared between all panels that were selected 
and used to evaluate the population structure by 
principal components analysis. For this analysis, 
principal components were calculated from the 
genomic relationship matrix (G) obtained accord-
ing to VanRaden (2008) as follows:

G = (M – 2P) (M – 2P)´/2∑pi (1 – pi)

where:
M	 = matrix of minor allele (with dimensions equal to the 

number of animals by the number of SNP markers)
pi	  = frequency of allele A of the i-th SNP
P	  = matrix (with dimensions equal to the number of 

animals by the number of SNPs) with each row con-
taining the pi values

The G matrix and principal components were 
obtained using the PreGSF90 software (Misztal 
et al. 2014). The first and the second principal 
component calculated based on the G matrix are 
shown in Figure 1. The animals from different 

panels showed high connectivity, indicating high 
consistency between the studied panels.

The genotypes from different panels were im-
puted to 50Kv2 because this panel included the 
highest number of males. In addition, several stud-
ies have shown that increasing the SNP density 
above 50 000 markers (50K) added small gains in 
the reliability of genomic prediction for Holstein 
cattle (VanRaden et al. 2011, 2013). Imputations 
were performed using the FImpute 2.2 software 
(Sargolzaei et al. 2014). According to Boison et 
al. (2015) and Jattawa et al. (2016), this software 
presents high imputation accuracies and high com-
putational performance in cattle populations. The 
FImpute option combining family and population-
based algorithms was considered here.

Seven imputation scenarios based on panel den-
sities were investigated. In the S1 to S6 scenarios, 
imputations were performed from LDv1, 50Kv1, 
57K, 77K, HDv3 and Ax58K panels to 50Kv2 panel. 
In these scenarios, the bulls in 50Kv2 panel were 
divided into reference (n = 352) and validation (n = 
101) populations based on their year of birth. The 
validation bulls had their 50K genotypes masked to 
each imputed panel (S1 to S6). The last scenario (S7) 
was defined to assess the quality of the imputation 
from Ax58K to 50Kv2 (Affymetrix and Illumina 
technologies, respectively), where the validation 
population consisted of 566 cows from Ax58K panel. 
Their 58K genotypes were masked to LDv1 panel and 
the reference population was given by 352 bulls from 
50Kv2. The seven scenarios are shown in Table 2.

Imputation accuracies (per sample and SNP-
specific) were assessed using Spearman’s cor-
relation coefficient (r) between the imputed 

Table 2. Description of evaluated imputation scenarios 

Scenario Description1 Animals n  
(validation/target) SNPs n before QC SNPs n after QC SNPs n common  

to 50Kv2
S1 LDv1 101/4     8 610     7 306    6 304
S2 50Kv1 101/144   54 001   39 910 35 866
S3 57K 101/80   56 947   40 602 35 692
S4 77K 101/34   76 883   69 403 23 051
S5 HDv3 101/78 139 376 118 298 33 383
S6 Ax58K 101/566   57 497   42 123 32 476
S7 Ax58K-a2 566/566   57 497   42 123   5 437

SNPs = single nucleotide polymorphisms, QC = quality control analysis
1reference panel for all scenarios studied was the 50Kv2 (54 609 SNPs before QC) including 38 624 SNPs after QC analysis
2validation population consisted of 566 cows which had their genotypes (32 476 SNPs in common to 50Kv2) masked to the 
LDv1 panel
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and true SNP markers and the concordance rate 
(CR) as a proportion of correctly imputed SNPs 
in relation to all imputed SNPs.

The effect of having relatives in the reference 
population for imputation was also investigated. 
Based on the G matrix (3239 SNPs shared between 
all panels), we calculated the average of the top 
10 relationships and the average of all relation-
ships higher than zero between each imputed 
animal and those in the reference population. 
The relationship between relatedness and im-
putation accuracy was assessed by regressing r 
on the average of the top 10 relationships.

To evaluate the effect of MAF on imputation 
accuracy, the SNPs to be imputed were classified 
according to two levels of MAF obtained from the 
reference population: MAF < 0.1 and MAF < 0.05. 
Linkage disequilibrium (LD) between markers 
was measured using r2 (Hill and Robertson 1968).

RESULTS AND DISCUSSION

Our study evaluated the accuracy of imputa-
tion for Portuguese Holstein cattle using several 

commercially available SNP panels with different 
densities and a relatively low number of geno-
typed animals. Imputation was performed using 
the FImpute software (Sargolzaei et al. 2014), 
and we evaluated sample imputation accuracy, 
effect of relatedness on sample imputation ac-
curacy, SNP-specific imputation accuracy, effect 
of MAF on SNP-specific imputation, and linkage 
disequilibrium.

Sample imputation accuracy and effect of 
relatedness on accuracy. Concordance rate and 
squared Pearson correlation coefficient have been 
reported in several studies (Boison et al. 2015; Jat-
tawa et al. 2016; Ventura et al. 2016) as a measure 
of imputation accuracy. Nevertheless, the Pearson 
correlation coefficient assumes that the two sam-
ples are normally distributed. If the assumption 
of normality is violated, the Pearson correlation 
coefficient may produce unreliable results. Differ-
ently, Spearman’s rank correlation coefficient is a 
non-parametric measure of correlation, calculated 
from ranks and it depicts a monotonic relationship 
(Goktas and Isci 2011). Therefore, Spearman’s cor-
relation seems to be more appropriate to measure 
accuracy for data obtained from genotypes.

PC1

50Kv1
50Kv2
57k
77K
Ax58K
HDv3

LDv1

PC
2

Figure 1. Plot of the first 2 principal compo-
nents (PC) of the genomic relationship matrix 
between animals of each panel
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Table 3 shows the sample imputation accuracy 
(r and CR) for each evaluated scenario. In general, 
sample imputation accuracies were within the range 
of those reported for dairy cattle (Boison et al. 2015; 
Jattawa et al. 2016). The accuracy means were high 
for all scenarios, ranging from 0.94 to 0.99. The CR 
was also high ranging from 92.59 to 98.18%. The 
lowest values of accuracy were observed in S1 and 
S7 scenarios, which had a higher number of imputed 
SNPs (83.68 and 83.26%, respectively). Although 
the mean of imputation accuracy was similar over 
the scenarios, the standard deviation was higher 
for S2 and S3, which had the lower number of im-
puted SNPs (7.14 and 7.59%, respectively). On the 
other hand, the scenarios that had a higher number 
of imputed SNPs (> 13.57%) presented the lowest 
standard deviations. Although studies have shown 
that imputation accuracy increases according to a 
reduction in the SNP number to be imputed (Khat-
kar et al. 2012; Chud et al. 2015), this pattern was 
not clearly observed here, since the best results 
were observed for S4, in which a higher number of 
SNPs was imputed (40.32%). Several factors may 
have influenced these results, such as the size and 
structure of the reference population, level of the 
relationship between the animals to be imputed 
and the reference population size, the position of 
SNP on the chromosome and its frequency (MAF) 
in the population (Ventura et al. 2014).

The S7 scenario was performed to evaluate im-
putation accuracy between panels from different 
companies (Illumina and Affymetrix), in which 27 039 
SNPs were imputed. Accuracies were high (mean 
of 0.94 for r and of 92.59% for CR) and similar to 
those found in the other scenarios that consisted of 
panels from Illumina only (Table 3). Similar results 

were observed by Zhou et al. (2014) and Berry et al. 
(2016). In addition, lower-density chips have become 
widely used for genotyping of females as an appro-
priate strategy for genomic selection. Therefore it is 
essential to evaluate the imputation accuracy for this 
group. The validation in females (S7 scenario) also 
indicates that females may be imputed using males 
in the reference population. Similar results were 
reported by Chud et al. (2015), when these authors 
showed that the imputation of female genotypes 
could be carried out using only males in the reference 
population. In addition, they referred to the highest 
mean genomic relatedness between reference and 
target populations observed in this scenario, which 
may have contributed to imputation accuracy.

Studies have shown that imputation accuracy is 
strongly associated with the level of the relationship 
between the animals from imputed and reference 
data set (Carvalheiro et al. 2014; Boison et al. 
2015; Ventura et al. 2016). In general, imputation 
accuracy is measured only as a function of the 
density of SNPs to be imputed using a validation 
population composed of animals from the refer-
ence panel, in which their SNPs were masked to 
the target SNP panel. Nevertheless, the validation 
population may not represent the real population 
to be imputed. Therefore, to assist the comparison 
of imputation accuracies in the different scenarios, 
a summary of the genomic relationship between 
the reference and validation population has been 
exploited (Daetwyler et al. 2013; Boison et al. 2015). 

In our study the average relatedness between vali-
dation and reference individuals as well as between 
target and reference individuals is shown in Table 4. 
The higher genomic relatedness with reference in-
dividuals was observed in S3 and S4 scenarios, in 

Table 3. Sample imputation accuracy for all scenarios evaluated. Spearman’s correlation coefficient (r) between imputed 
and true SNPs markers and CR, as a proportion of correctly imputed SNPs versus true SNPs

Scenario SNPs imputed n
r CR

mean min. max. SD mean min. max. SD
S1 32 320 (83.68%) 0.96 0.93 0.99 0.012 95.39 91.46 98.27 1.45
S2 2 758 (7.14%) 0.98 0.80 0.99 0.032 97.25 73.46 99.27 4.26
S3 2 932 (7.59%) 0.98 0.80 0.99 0.032 97.24 75.03 99.28 4.02
S4 15 573 (40.32%) 0.99 0.95 0.99 0.008 98.11 93.37 99.22 1.07
S5   5 241 (13.57%) 0.99 0.93 0.99 0.011 98.18 91.18 99.43 1.48
S6  6 148 (15.92%) 0.98 0.93 0.99 0.010 97.87 91.64 99.15 1.31
S7 27 039 (83.26%) 0.94 0.79 0.98 0.020 92.59 76.54 97.40 2.41

SNPs = single nucleotide polymorphisms, CR = concordance rate, min = minimum, max = maximum, SD = standard deviation
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which 58.75 and 73.53% of individuals had at least 
one genotyped half-sib in the reference population, 
respectively. The remaining scenarios including vali-
dation had less than 15.38% of individuals with at 
least one genotyped half-sib in the reference popula-
tion. The mean of the top 10 genomic relationships 
between animals of imputed scenarios and reference 
population was similar (ranging from 0.09 to 0.19) to 
the mean of genomic relationships between animals 
of validation and reference populations (Table 4). 
This result indicated that the animals selected to 
compose the validation population are representa-
tive of all evaluated scenarios, thus the imputation 
accuracies can be compared.

In addition, the impact of relatedness between 
validation and reference animals on imputation ac-
curacy is shown in Figure 2. The greatest influence 
of relatedness with the reference population on  
the r was observed for S1 (P < 0.01), in which a higher 
number of SNPs was imputed. On the other hand, 

Table 4. Genomic relationships between animals in the 
imputed and reference data set (values are means + 
standard deviations)

Panel (Imput/Ref )
Genomic relationships1

top 10 relationships > 0

Val/Ref 0.11 (0.05) 0.031 (0.008)

S1/Ref 0.09 (0.01) 0.028 (0.003)

S2/Ref 0.13 (0.04) 0.034 (0.006)

S3/Ref 0.18 (0.06) 0.046 (0.010)

S4/Ref 0.19 (0.05) 0.049 (0.012)

S5/Ref 0.14 (0.06) 0.035 (0.009)

S6/Ref 0.10 (0.03) 0.031 (0.005)

Imput = scenarios imputed, Val = validation population,  
Ref = reference population
1top 10 = average genomic relationships of top 10 and average 
relationships > 0 between imputed individuals and reference 
individuals

Average genomic relationship top 10

Im
pu

ta
tio

n 
ac

cu
ra

cy
 

S1

S2

S3

S4

S5

S6

Figure 2. Imputation ac-
curacy (r) as a function of 
genomic relatedness (top 10)
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no such a behaviour was observed (P > 0.05) in the 
remaining scenarios (S2, S3, S4, S5, and S6), in which 
a lower number of SNPs was imputed. These results 
indicate that relatedness has a greater influence on 
imputation accuracy when higher SNP densities 
are imputed. Similar results were also found by 
Carvalheiro et al. (2014) and Chud et al. (2015).

SNP-specific imputation accuracy and effect 
of MAF. In order to graphically display the results 
of imputation accuracy by chromosomes, we made 
a circular plot using the circlize package (Gu et 
al. 2014) of R software (R Core Team, 2018). The 
average accuracy (r and CR) for SNPs by chromo-
somes is shown in Figure 3, Supplementary Table S1 
and Table S2 in Supplementary Online Material 

(SOM). In general, the r and CR accuracies among 
chromosomes ranged from 0.88 to 0.93 (93.31 to 
96.41%) for S1; 0.88 to 0.95 (95.78 to 98.15%) for 
S2; 0.91 to 0.96 (95.61 to 98.35%) for S3; 0.94 to 
0.97 (97.57 to 98.66%) for S4; 0.92 to 0.97 (97.47 
to 98.85%) for S5; 0.93 to 0.97 (97.26 to 98.72%) 
for S6; and from 0.84 to 0.89 (90.79 to 94.26%) for 
S7. As expected, the S1 and S7 scenarios presented 
the lowest accuracy due to the higher number of 
imputed SNPs (83.68% and 83.26%, respectively). 
On the other hand, although with minimal dif-
ferences, S4 containing 40.32% of imputed SNPs 
presented higher accuracy when compared to S2 
or S3 scenarios, in which only 7.14% and 7.59% 
of SNPs were imputed, respectively.

Speaman’s correlation	 Concordance rate
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S6
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Figure 3. SNP-specific imputation accuracy for all scenarios evaluated
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Figure 4. Means of linkage disequi-
librium (r2) between adjacent SNPs 
markers separated by at most 1 Mb 
within each chromosome

Table 5. Number of imputed single nucleotid polymor-
phisms (SNPs) and number of SNPs at different levels of 
minor allele frequency (MAF) evaluated

Scenario Imputed 
SNPs n

MAF
< 0.1 < 0.05

S1 32 320 5 743 (17.77%) 2 094 (6.48%)

S2   2 758 1 176 (42.64%)      769 (27.88%)

S3   2 932 1 065 (36.32%)      748 (25.51%)

S4 15 573 3 453 (22.17%) 1 471 (9.45%)

S5   5 241 1 790 (34.15%)       982 (18.74%)

S6   6 148 1 158 (18.84%)       638 (10.38%)

Most probably this occurred due to the imputa-
tion of SNPs with low frequency in the population. 
To clarify this point, we calculated the average 
MAF (< 0.1 and < 0.05) in the reference population 
for each set of SNPs imputed in each scenario and 
we observed that the number of imputed SNPs 
with MAF lower than 0.05 was 18.43% and 16.06% 
higher in S2 and S3 compared to S4, respectively 
(Table 5). Therefore, for S2 and S3, MAF was 
more relevant to imputation accuracy than panel 
density. This is consistent with a previous study 
of Ventura et al. (2016), in which the authors in-
vestigated imputation accuracy for rare alleles ac-
cording to the MAF level (ranging from 0 to 0.05) 
and observed low accuracy for rare alleles (up to 
57.8%). In addition, Boison et al. (2015) showed 
that the Illumina 50Kv2 panel presented a higher 
proportion of markers with low MAF compared 
to the panels from GeneSeek. Probably, a strategy 
to reduce the effect of MAF on imputation accu-
racy would be to increase the size of the reference 
population (Heidaritabar et al. 2015).

In agreement with Carvalheiro et al. (2014), the 
r values were higher than the corresponding CR 

values for sample imputation accuracy because 
the penalty for one incorrectly imputed allele is 
relatively higher for CR than for r (Table 3). On the 
other hand, the opposite behaviour was observed 
in SNP-specific imputation accuracy, in which the 
r values were lower than the corresponding val-
ues of CR (Figure 3, Supplementary Table S1 and 
Table S2 in SOM). There are no reports comparing 
both criteria in SNP-specific imputation accuracy, 
but most probably this occurred due to the MAF 
effect. As reported by Hickey et al. (2012), a marker 
with very low MAF increases the probability of 
being homozygous for the common allele, which in 
general produces an increase in CR. The opposite 
behaviour is expected for r, where the imputation 
accuracy is lower for markers with low MAF.

Linkage disequilibrium. The mean of LD esti-
mated for 29 chromosomes considering the animals 
of the reference population is shown in Figure 4. It 
was observed that 52.82% of the SNPs had low levels 
of LD (< 0.10). The mean LD for the population 
was 0.107. The highest mean LD was observed on 
chromosome 14 (r2 = 0.135), while chromosome  27 
had the lowest mean LD (r2 = 0.083). These results 
are in agreement with those reported by Salem et 
al. (2018), when the authors studied the level of 
LD in Portuguese Holstein cattle.

In summary, we evaluated the imputation accu-
racy for Portuguese Holstein cattle using several 
commercially available SNP panels with different 
densities in a relatively small number of genotyped 
animals. Sample imputation accuracy was higher 
than 0.93 for Spearman’s correlation and higher 
than 92% for concordance rate. In addition, the 
relatedness has a large influence on accuracy when 
higher SNPs densities are imputed. SNP-specific 
imputation accuracy was higher than 0.86 for 
Spearman’s correlation and higher than 92% for 
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concordance rate. Moreover, MAF was more rel-
evant to accuracy than the panel density, probably 
due to the small number of animals in the reference 
population used in this study.

CONCLUSION

Our results suggest that genotype imputation for 
Portuguese Holstein cattle using several commer-
cially available SNP panels with different densities 
in a relatively small number of genotyped animals 
is feasible and may be advantageous to the national 
genomic evaluations of dairy cattle.
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