Czech J. Anim. Sci., 2019, 64(6):248-254 | DOI: 10.17221/240/2018-CJAS

Maternal variability of Croatian Spotted goat (Capra hircus)Original Paper

Ivana Drzaic, Ino Curik, Dinko Novosel, Vlatka Cubric-Curik*
Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia

Abstract: This study provides the first characterization of maternal ancestry and mitochondrial DNA (mtDNA) diversity in the Croatian Spotted goat (CSG), the most important autochthonous goat breed in Croatia. CSG (n = 25) were randomly sampled from seven herds and a 660-bp fragment from the mtDNA D-loop region was sequenced. Those sequences were compared with 122 corresponding GenBank sequences from goat populations in Albania, Austria, Egypt, Greece, Italy, Romania and Switzerland. CSG showed a great polymorphism (only three out of 17 haplotypes were shared) with high a haplotype (Hd = 0.967 ± 0.019) and nucleotide diversity (π = 0.01305 ± 0.00068). When compared with Mediterranean and ancient goats, all of the 25 CSG were randomly scattered inside haplogroup A showing the weak phylogeographic structure with within-breed variance accounting for 91.76% of the genetic variation. In addition, population expansion tests (mismatch distribution and Fu's Fs statistic) supported these results suggesting at least one population expansion.

Keywords: ancestral maternal diversity; D-loop; Mediterranean goat population; phylogeography; unique haplotypes

Published: June 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Drzaic I, Curik I, Novosel D, Cubric-Curik V. Maternal variability of Croatian Spotted goat (Capra hircus). Czech J. Anim. Sci. 2019;64(6):248-254. doi: 10.17221/240/2018-CJAS.
Download citation

Supplementary files:

Download file240-2018 SOM.pdf

File size: 1.59 MB

References

  1. Amills M., Capote J., Tomas A., Kelly L., Obexer-Ruff G., Angiolillo A., Sanchez A. (2004): Strong phylogeographic relationships among three goat breeds from the Canary Islands. Journal of Dairy Research, 71, 257-262. Go to original source... Go to PubMed...
  2. Amills M., Ramirez O., Tomas A., Badaoui B., Marmi J., Acosta J., Sanchez A., Capote J. (2009): Mitochondrial DNA diversity and origins of South and Central American goats. Animal Genetics, 40, 315-322. Go to original source... Go to PubMed...
  3. Bandelt H.J., Forster P., Rohl A. (1999): Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48. Go to original source... Go to PubMed...
  4. Brown G., Gadaleta G., Pepe G., Saccone C. (1986): Structural conservation and variation in the D loop containing the region of vertebrate mitochondrial DNA. Journal of Molecular Biology, 192, 503-510. Go to original source... Go to PubMed...
  5. Chen S.Y., Su Y.H., Wu S.F., Sha T., Zhang Y.P. (2005): Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Molecular Phylogenetics and Evolution, 37, 804-814. Go to original source... Go to PubMed...
  6. Croatian Agricultural Agency (2017): Sheep, Goats and Small Animals Breeding. Croatian Agricultural Agency, annual report, 56-79.
  7. Daly K.G., Maisano Desler P., Mullin V.E., Scheu A., Mattiangeli V., Teasdale M.D., Hare A.J., Burger J., Pereira Verdugo M., Collins M.J., Kehati R., Erek C.M., Bar-Oz G., Pompanon F., Cumer T., Cakirlar C., Fatemeh Mohaseb A., Decruyenaere D., Davoudi H., Cevik O., Rollefson G., Vigne J.D., Khazaeli R., Fathi H., Beizaee Doost S., Rahimi Sorkhani R., Akbar Vahdati A., Sauer E.W., Azizi Kharanaghi H., Maziar S., Gasparin B., Pinhasi R., Martin L., Orton D., Arbuckle B.S., Benecke N., Manica A., Horwitz L.K., Mashkour M., Bradley D.G. (2018): Ancient goat genome reveal mosaic domestication in the Fertile Crescent. Science, 361, 85-88. Go to original source... Go to PubMed...
  8. Diamond J., Bellwood P. (2003): Farmers and their languages: The first expansions. Science, 300, 597-603. Go to original source... Go to PubMed...
  9. Drummond A.J., Suchard M.A., Xie D., Ramnaut A. (2012): Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973. Go to original source... Go to PubMed...
  10. Excoffier L., Lischer H.E.L. (2010): Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567. Go to original source... Go to PubMed...
  11. Fernandez H., Hughes S., Vigne J.D., Helmer D., Hodgins G., Miquel C., Hanni C., Luikart G., Taberlet P. (2006): Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. Proceedings of the National Academy of Sciences of the United States of America, 103, 15375-15379. Go to original source... Go to PubMed...
  12. Fu Y.X. (1997): Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925. Go to original source... Go to PubMed...
  13. Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J., Lopez R. (2010): A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research, 38, 695-699. Go to original source... Go to PubMed...
  14. Hall S.J.G., Bradley D.G. (1995): Conserving livestock breed biodiversity. Trends in Ecology and Evolution, 10, 267-270. Go to original source... Go to PubMed...
  15. Joshi M.B., Rout P.K., Mandal A.K., Tyler-Smith C., Singh L., Thangaraj K. (2004): Phylogeography and origin of Indian domestic goat. Molecular Biology and Evolution, 21, 454-462. Go to original source... Go to PubMed...
  16. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. Go to original source... Go to PubMed...
  17. Lanave C., Preparata G., Saccone C., Serio G. (1984): A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution, 20, 86-93. Go to original source... Go to PubMed...
  18. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. (2007): ClustalW and ClustalX version 2. Bioinformatics, 23, 2947-2948. Go to original source... Go to PubMed...
  19. Lin B.Z., Odahara S., Ishida M., Kato T., Sasazaki S., Nozawa K., Mannen H. (2013): Molecular phylogeography and genetic diversity of East Asian goats. Animal Genetics, 44, 79-85. Go to original source... Go to PubMed...
  20. Liu R.Y., Yang G.S., Lei C.Z. (2006): The genetic diversity of mtDNA D-loop and the origin of Chinese goats. Acta Genetica Sinica, 33, 420-428. Go to original source... Go to PubMed...
  21. Luikart G., Gielly L., Excoffier L., Vigne J.D., Bouvet J., Taberlet P. (2001): Multiple maternal origins and weak phylogeographic structure in domestic goats. Proceedings of the National Academy of Sciences of the United States of America, 98, 5927-5932. Go to original source... Go to PubMed...
  22. Martinez A., Ferrando A., Manunza A., Gomez M., Landi V., Jordana J., Capote J., Badaoui B., Vidal O., Delgado J.V., Amills M. (2012): Inferring the demographic history of a highly endangered goat breed through the analysis of nuclear and mitochondrial genetic signatures. Small Ruminant Research, 104, 78-84. Go to original source...
  23. Naderi S., Rezaei H.R., Taberlet P., Zundel S., Rafat S.A., Naghash H.R., El-Barody M.A.A., Ertugrul O., Pompanon F. (2007): Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS ONE, 2, e1012. Go to original source... Go to PubMed...
  24. R Core Team (2017): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  25. Radic D. (2018): Island of Korčula: From the Earliest Times to the End of Prehistory. Cultural Centre "Vela Luka", Vela Luka, Croatia.
  26. Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. (2018): Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901-904. Go to original source... Go to PubMed...
  27. Rogers A.R., Harpending H. (1992): Population growth curves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569. Go to PubMed...
  28. Sardina M.T., Ballester M., Marmi J., Finocchiaro R., van Kaam J.B.C.H.M., Potolano B., Folch J.M. (2006): Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage. Animal Genetics, 37, 376-378. Go to original source... Go to PubMed...
  29. Schneider S., Excoffier L. (1999): Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics, 152, 1079-1089. Go to original source... Go to PubMed...
  30. Sultana S., Mannen H., Tsuji S. (2003): Mitochondrial DNA diversity of Pakistani goats. Animal Genetics, 34, 417-421. Go to original source... Go to PubMed...
  31. Vacca G.M., Daga C., Pazzola M., Carcangiu V., Dettori M.L., Cozzi M.C. (2010): D-loop sequence mitochondrial DNA variability of Sarda goat and other goat breeds and populations reared in the Mediterranean area. Journal of Animal Breeding and Genetics, 127, 352-260. Go to original source... Go to PubMed...
  32. Weiner J. (2017): pca3d: Three Dimensional PCA Plots. R package version 0.10. Available at https://CRAN.Rproject.org/package=pca3d (accessed Dec 10, 2018).
  33. Zeder M., Hesse B. (2000): The initial domestication of goats (Capra hircus) in the Zaragos Mountains 10 000 years ago. Science, 287, 2254-2257. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.