Czech J. Anim. Sci., 2016, 61(6):251-261 | DOI: 10.17221/51/2015-CJAS

A simple method for assessing hyaluronic acid production by cumulus-oocyte complexesOriginal Paper

K. Zámostná1, J. Nevoral1, T. Kott2, R. Procházka3, M. Orsák4, M. ©ulc4, V. Pajkoąová5, V. Pavlík6, T. ®almanová1, K. Hoąková1, F. Jílek1, P. Klein7
1 Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Institute of Animal Science, Prague-Uhříněves, Czech Republic
3 Institute of Animal Physiology and Genetics, Liběchov, Czech Republic
4 Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
5 Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
6 Contipro Biotech s.r.o., Dolní Dobrouč, Czech Republic
7 Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic

The cumulus expansion of cumulus-oocyte complex (COC) is an essential regulating process of oocyte maturation and as such it is a possible biomarker of the in vitro maturing oocytes quality. Cumulus expansion is usually assessed by non-invasive methods based on visual evaluation with many inaccuracies. On the other hand, analytical measurement of the quantity of hyaluronic acid (HA), the most abundant compound of expanded cumuli, is one of possible methods to evaluate cumulus expansion precisely. Therefore, this study aimed to verify the applicability of HA analysis for evaluating the cumulus expansion and testing oocyte maturation. The COCs were cultured in modified M199 medium for 8-48 h. The samples for the HA analysis were prepared on an 8-hour time scale, and HA retained in COCs was measured using a spectrophotometric method adapted for this purpose. We observed an increasing quantity of HA during the in vitro cultivation. A comparison with expanded COCs' classification or expansion area proved the proposed method of HA analysis suitable for the evaluation of cumulus expansion in vitro. Our findings consider the quantity of HA-expressed cumulus expansion to be a valuable marker of COC quality enabling an adequate oocyte meiotic stage estimation.

Keywords: oocyte; meiotic maturation; cumulus expansion; glycosaminoglycans; spectrophotometry

Published: June 30, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zámostná K, Nevoral J, Kott T, Procházka R, Orsák M, ©ulc M, et al.. A simple method for assessing hyaluronic acid production by cumulus-oocyte complexes. Czech J. Anim. Sci. 2016;61(6):251-261. doi: 10.17221/51/2015-CJAS.
Download citation

References

  1. Abeydeera L.R., Wang W.H., Cantley T.C., Prather R.S., Day B.N. (1998): Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 50, 747-756. Go to original source... Go to PubMed...
  2. Alkrad J.A., Mrestani Y., Stroehl D., Wartewig S., Neubert R. (2003): Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectroscopies. Journal of Pharmaceutical and Biomedical Analysis, 31, 545-550. Go to original source... Go to PubMed...
  3. Appeltant R., Somfai T., Nakai M., Bodo S., Maes D., Kikuchi K., Van Soom A. (2015): Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus-oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology, 83, 567-576. Go to original source... Go to PubMed...
  4. Assidi M., Dieleman S.J., Sirard M.A. (2010): Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction, 140, 835-852. Go to original source... Go to PubMed...
  5. Assou S., Haouzi D., De Vos J., Hamamah S. (2010): Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Molecular Human Reproduction, 16, 531-538. Go to original source... Go to PubMed...
  6. Bergandi L., Basso G., Evangelista F., Canosa S., Dalmasso P., Aldieri E., Revelli A., Benedetto C., Ghigo D. (2014): Inducible nitric oxide synthase and heme oxygenase 1 are expressed in human cumulus cells and may be used as biomarkers of oocyte competence. Reproductive Sciences, 21, 1370-1377. Go to original source... Go to PubMed...
  7. Chen L., Wert S.E., Hendrix E.M., Russell P.T., Cannon M., Larsen W.J. (1990): Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Molecular Reproduction and Development, 26, 236-247. Go to original source... Go to PubMed...
  8. Daen F.P., Sato E., Naito K., Toyoda Y. (1994): The effect of pig follicular fluid fractions on cumulus expansion and male pronucleus formation in porcine oocytes matured and fertilized in vitro. Journal of Reproduction and Fertility, 101, 667-673. Go to original source... Go to PubMed...
  9. Davachi N.D., Kohram H., Zainoaldini S. (2012): Cumulus cell layers as a critical factor in meiotic competence and cumulus expansion of ovine oocytes. Small Ruminant Research, 102, 37-42. Go to original source...
  10. Dekel N., Hillensjo T., Kraicer P.F. (1979): Maturational effects of gonadotropins on the cumulus-oocyte complex of the rat. Biology of Reproduction, 20, 191-197. Go to original source... Go to PubMed...
  11. Dekel N., Lawrence T.S., Gilula N.B., Beers W.H. (1981): Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Developmental Biology, 86, 356-362. Go to original source... Go to PubMed...
  12. Dragovic R.A., Ritter L.J., Schulz S.J., Amato F., Armstrong D.T., Gilchrist R.B. (2005): Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology, 146, 2798-2806. Go to original source... Go to PubMed...
  13. Eppig J.J. (1979): FSH stimulates hyaluronic acid synthesis by oocyte-cumulus cell complexes from mouse preovulatory follicles. Nature, 281, 483-484. Go to original source... Go to PubMed...
  14. Eppig J.J. (1980): Role of serum in FSH stimulated cumulus expansion by mouse oocyte-cumulus cell complexes in vitro. Biology of Reproduction, 22, 629-633. Go to original source... Go to PubMed...
  15. Fagbohun C.F., Downs S.M. (1990): Maturation of the mouse oocyte-cumulus cell complex: stimulation by lectins. Biology of Reproduction, 42, 413-423. Go to original source... Go to PubMed...
  16. Feuerstein P., Puard V., Chevalier C., Teusan R., Cadoret V., Guerif F., Houlgatte R., Royere D. (2012): Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One, 7, e40449. Go to original source... Go to PubMed...
  17. Flechon J.E., Degrouard J., Kopecny V., Pivko J., Pavlok A., Motlik J. (2003): The extracellular matrix of porcine mature oocytes: origin, composition and presumptive roles. Reproductive Biology and Endocrinology, 1, 124. Go to original source... Go to PubMed...
  18. Huang Z., Wells D. (2010): The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Molecular Human Reproduction, 16, 715-725. Go to original source... Go to PubMed...
  19. Kimura N., Konno Y., Miyoshi K., Matsumoto H., Sato E. (2002): Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation. Biology of Reproduction, 66, 707-717. Go to original source... Go to PubMed...
  20. Kubo N., Cayo-Colca I.S., Miyano T. (2015): Effect of estradiol-17β during in vitro growth culture on the growth, maturation, cumulus expansion and development of porcine oocytes from early antral follicles. Animal Science Journal, 86, 251-259. Go to original source... Go to PubMed...
  21. Machado M.F., Caixeta E.S., Sudiman J., Gilchrist R.B., Thompson J.G., Lima P.F., Price C.A., Buratini J. (2015): Fibroblast growth factor 17 and bone morphogenetic protein 15 enhance cumulus expansion and improve quality of in vitro-produced embryos in cattle. Theriogenology, 84, 390-398. Go to original source... Go to PubMed...
  22. McKenzie L.J., Pangas S.A., Carson S.A., Kovanci E., Cisneros P., Buster J.E., Amato P., Matzuk M.M. (2004): Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction, 19, 2869-2874. Go to original source... Go to PubMed...
  23. Motlik J., Fulka J. (1976): Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. Journal of Experimental Zoology, 198, 155-162. Go to original source... Go to PubMed...
  24. Nakayama T., Inoue M., Sato E. (1996): Effect of oocytectomy on glycosaminoglycan composition during cumulus expansion of porcine cumulus-oocyte complexes cultured in vitro. Biology of Reproduction, 55, 1299-1304. Go to original source... Go to PubMed...
  25. Nemcova L., Nagyova E., Petlach M., Tomanek M., Prochazka R. (2007): Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes. Biology of Reproduction, 76, 1016-1024. Go to original source... Go to PubMed...
  26. Nevoral J., Orsak M., Klein P., Petr J., Dvorakova M., Weingartova I., Vyskocilova A., Zamostna K., Krejcova T., Jilek F. (2014): Cumulus cell expansion, its role in oocyte biology and perspectives of measurement: A review. Scientia Agriculturae Bohemica, 45, 212-225. Go to original source...
  27. Prochazka R., Nagyova E., Brem G., Schellander K., Motlik J. (1998): Secretion of cumulus expansion-enabling factor (CEEF) in porcine follicles. Molecular Reproduction and Development, 49, 141-149. Go to original source... Go to PubMed...
  28. Prochazka R., Petlach M., Nagyova E., Nemcova L. (2011): Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Reproduction, 141, 425-435. Go to original source... Go to PubMed...
  29. Qian Y., Shi W.Q., Ding J.T., Sha J.H., Fan B.Q. (2003): Predictive value of the area of expanded cumulus mass on development of porcine oocytes matured and fertilized in vitro. Journal of Reproduction and Development, 49, 167-174. Go to original source... Go to PubMed...
  30. Salustri A., Yanagishita M., Hascall V.C. (1989): Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cumulus cell-oocyte complex during folliclestimulating hormone-induced mucification. Journal of Biological Chemistry, 264, 13840-13847. Go to original source...
  31. Salustri A., Camaioni A., Tirone E., D'Alessandris C. (1995): Hyaluronic acid and proteoglycan accumulation in the cumulus oophorus matrix. Italian Journal of Anatomy and Embryology, 100, 479-484.
  32. Solursh M. (1976): Glycosaminoglycan synthesis in the chick gastrula. Developmental Biology, 50, 525-530. Go to original source... Go to PubMed...
  33. Takagaki K., Takeda Y., Nakamura T., Daidouji K., Narita H., Endo M. (1994): Analysis of glycosaminoglycans by high-performance liquid chromatography. Journal of Biochemical and Biophysical Methods, 28, 313-320. Go to original source... Go to PubMed...
  34. Vanderhyden B.C. (1993): Species differences in the regulation of cumulus expansion by an oocyte-secreted factor(s). Journal of Reproduction and Fertility, 98, 219-227. Go to original source... Go to PubMed...
  35. Vanderhyden B.C., Caron P.J., Buccione R., Eppig J.J. (1990): Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Developmental Biology, 140, 307-317. Go to original source... Go to PubMed...
  36. Volpi N. (2000): Hyaluronic acid and chondroitin sulfate unsaturated disaccharides analysis by high-performance liquid chromatography and fluorimetric detection with dansylhydrazine. Analytical Biochemistry, 277, 19-24. Go to original source... Go to PubMed...
  37. Yokoo M., Tienthai P., Kimura N., Niwa K., Sato E., Rodrigues-Martinez H. (2002): Localisation of the hyaluronan receptor CD44 in porcine cumulus cells during in vivo and in vitro maturation. Zygote, 10, 317-326. Go to original source... Go to PubMed...
  38. Yokoo M., Shimizu T., Kimura N., Tunjung W.A., Matsumoto H., Abe H., Sasada H., Rodriguez-Martinez H., Sato E. (2007): Role of the hyaluronan receptor CD44 during porcine oocyte maturation. Journal of Reproduction and Development, 53, 263-270. Go to original source... Go to PubMed...
  39. Yokoo M., Kimura N., Sato E. (2010): Induction of oocyte maturation by hyaluronan-CD44 interaction in pigs. Journal of Reproduction and Development, 56, 15-19. Go to original source... Go to PubMed...
  40. Yosizawa Z., Ototani N., Satake S. (1983): A simple method for the quantitation of glycuronic acid-containing glycosaminoglycans with mucopolysaccharidases. Analytical Biochemistry, 128, 250-256. Go to original source... Go to PubMed...
  41. Yuan Y., Ida J.M., Paczkowski M., Krisher R.L. (2011): Identification of developmental competence-related genes in mature porcine oocytes. Molecular Reproduction and Development, 78, 565-575. Go to original source... Go to PubMed...
  42. Zhang M., Tao Y., Xia G., Xie H., Hong H., Wang F., Lei L. (2005): Atrial natriuretic peptide negatively regulates follicle-stimulating hormone-induced porcine oocyte maturation and cumulus expansion via cGMP-dependent protein kinase pathway. Theriogenology, 64, 902-916. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.