Czech J. Anim. Sci., 2016, 61(5):232-242 | DOI: 10.17221/118/2014-CJAS

Effects of polymorphism in the bovine PTPRQ gene on the expression of MYF6 and MYF5 genes in skeletal muscle and on meat production traits in beef bullsOriginal Paper

D. Robakowska-Hyżorek1,2, R.R. Starzyński2, B. Żelazowska2, J. Oprządek3, T. Sadkowski4, L. Zwierzchowski2
1 Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
2 Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
3 Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
4 Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland

The aim of the study was to characterize nucleotide sequence polymorphisms in the bovine PTPRQ gene, to search for their possible effect on the expression of myogenic factor 6 (MYF6; MRF4) and myogenic factor 5 (MYF5) genes in skeletal muscle and on meat production traits. Three novel SNPs were found in intron 35 of the bovine PTPRQ gene: g.200,451A>G, g.200,467T>C, g.200,480C>T (GenBank Acc. No. NW_001494990.2; counted from translation initiation site). These SNPs are placed very closely to each other (within 29 base pairs). The results showed that genotype influenced the expression of MYF6 and MYF5 genes in longissimus dorsi muscle of Limousine bulls both at the transcript and protein levels. Moreover, an association was found between the PTPRQ genotype and carcass traits in Limousine bulls. These findings suggest that bovine PTPRQ gene may contain regulatory sequences for MRF genes located 24 kb downstream. The results also showed that nucleotide sequence polymorphisms in the PTPRQ gene may influence meat production traits in beef cattle, possibly through the regulation of the MRF genes expression.

Keywords: receptor-type III PTP with phosphatidylinositol phosphatase activity; genotype; muscle regulatory factors; bovine; meat traits

Published: May 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Robakowska-Hyżorek D, Starzyński RR, Żelazowska B, Oprządek J, Sadkowski T, Zwierzchowski L. Effects of polymorphism in the bovine PTPRQ gene on the expression of MYF6 and MYF5 genes in skeletal muscle and on meat production traits in beef bulls. Czech J. Anim. Sci. 2016;61(5):232-242. doi: 10.17221/118/2014-CJAS.
Download citation

Supplementary files:

Download file118-2014 Zwierzchowski Suppl.pdf

File size: 89.54 kB

References

  1. Berger R.R., Sanders M.M. (2000): Estrogen modulates HNF-3beta mRNA levels in the developing chick oviduct. DNA and Cell Biology, 19, 103-112. Go to original source... Go to PubMed...
  2. Berkes C.A., Tapscott S.J. (2005): MyoD and the transcriptional control of myogenesis. Seminars in Cell and Developmental Biology, 16, 585-595. Go to original source... Go to PubMed...
  3. Bhuiyan M.S.A., Kim N.K., Cho Y.M., Yoon D., Kim K.S., Jeon J.T., Lee J.H. (2009): Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livestock Science, 126, 292-297. Go to original source...
  4. Borges L.G., Seifert R.A., Grant F.J., Hart C.E., Disteche C.M., Edelhoff S., Solca F.F., Lieberman M.A., Lindner V., Fischer E.H., Lok S., Bowen-Pope D.F. (1996): Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells. Circulation Research, 79, 570-580. Go to original source... Go to PubMed...
  5. Carvajal J.J., Rigby P.W.J. (2010): Regulation of gene expression in vertebrate skeletal muscle. Experimental Cell Research, 316, 3014-3018. Go to original source... Go to PubMed...
  6. Carvajal J.J., Cox D., Summerbell D., Rigby P.W.J. (2001): A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development, 128, 1857-1868. Go to original source... Go to PubMed...
  7. Carvajal J.J., Keith A., Rigby P.W.J. (2008): Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5. Genes and Development, 22, 265-276. Go to original source... Go to PubMed...
  8. Chandra S., Terragni J., Zhang G.Q., Pradhan S., Haushka S., Johnston D., Baribault C., Lacey M., Ehrlich M. (2015): Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Human Molecular Genetics, 24, 4660-4673. Go to original source... Go to PubMed...
  9. Chang T.H.T., Primig M., Hadchouel J., Tajbakhsh S., Rocancourt D., Fernandez A., Kappler R., Scherthan H., Buckingham M. (2004): An enhancer directs differential expression of the linked Mrf4 and Myf5 myogenic regulatory genes in the mouse. Developmental Biology, 269, 595-608. Go to original source... Go to PubMed...
  10. Giordani J., Bajard L., Demignon J., Daubas P., Buckingham M., Maire P. (2007): Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proceedings of the National Academy of Sciences of the United States of America, 104, 11310-11315. Go to original source... Go to PubMed...
  11. Hoggatt A.M., Kriegel A.M., Smith A.F., Herring B.P. (2000): Hepatocyte nuclear factor-3 homologue 1 (HFH-1) represses transcription of smooth muscle-specific genes. Journal of Biological Chemistry, 275, 31162-31170. Go to original source... Go to PubMed...
  12. Jung H., Kim W.K., Kim D.H., Cho Y.S., Kim S.J., Park S.G., Park B.C., Lim H.M., Bae K.H., Lee S.C. (2009): Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 383, 252-257. Go to original source... Go to PubMed...
  13. Kanai N., Fujii T., Saito K., Yokoyama T. (1994): Rapid and simple method for preparation of genomic DNA from easily obtainable clotted blood. Journal of Clinical Pathology, 47, 1043-1044. Go to original source... Go to PubMed...
  14. Lee D.K. (2002): Androgen receptor enhances myogenin expression and accelerates differentiation. Biochemical and Biophysical Research Communications, 294, 408-413. Go to original source... Go to PubMed...
  15. Lee E.J., Malik A., Pokharel S., Ahmad S., Mir B.A., Cho K.H., Kim J., Kong J.C., Lee D.-M., Chung K.Y., Kim S.H., Choi I. (2014): Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis. PLoS ONE, 9, e92447. Go to original source... Go to PubMed...
  16. Li C., Basarab J., Snelling W.M., Benkel B., Murdoch B., Hansen C., Moore S.S. (2004): Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. Journal of Animal Science, 82, 1-7. Go to original source... Go to PubMed...
  17. Liu M., Peng J., Xu D.Q., Zheng R., Li F.E., Li J.L., Zuo B., Lei M.G., Xiong Y.Z., Deng C.Y., Jiang S.W. (2008): Association of MYF5 and MYOD1 gene polymorphisms and meat quality traits in Large White × Meishan F2 pig populations. Biochemical Genetics, 46, 720-732. Go to original source... Go to PubMed...
  18. Maak S., Neumann K., Swalve H.H. (2006): Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene, 379, 141-147. Go to original source... Go to PubMed...
  19. MacNeil M.D., Grosz M.D. (2002): Genome-wide scans for QTL affecting carcass traits in Hereford × composite double backcross populations. Journal of Animal Science, 80, 2316-2324. Go to original source...
  20. Macpherson P.C.D., Wang X., Goldman D. (2011): Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. Journal of Cellular Biochemistry, 112, 2149-2159. Go to original source... Go to PubMed...
  21. Oprzadek J., Dymnicki E., Oprzadek A., Sloniewski K., Sakowski T., Reklewski Z. (2001): A note on the effect of breed of beef cattle on the carcass traits. Animal Science Papers and Reports, 19, 79-89.
  22. Penner G., Gang G., Sun X., Wray C., Hasselgren P.O. (2002): C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 282, R439-R444. Go to original source... Go to PubMed...
  23. Pfaffl M.W. (2001): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. Go to original source... Go to PubMed...
  24. Pietas A., Schluns K., Marenholz I., Schafer B.W., Heizmann C.W., Petersen I. (2002): Molecular cloning and characterization of the human S100A14 gene encoding a novel member of the S100 family. Genomics, 79, 513-522. Go to original source... Go to PubMed...
  25. Pin C.L., Konieczny S.F. (2002): A fast fiber enhancer exists in the muscle regulatory factor 4 gene promoter. Biochemical and Biophysical Research Communications, 299, 7-13. Go to original source... Go to PubMed...
  26. Ribas R., Moncaut N., Siligan C., Taylor K., Cross J.W., Rigby P.W.J., Carvajal J.J. (2011): Members of the TEAD family of transcription factors regulate the expression of Myf5 in ventral somitic compartments. Developmental Biology, 355, 372-380. Go to original source... Go to PubMed...
  27. Robakowska-Hyzorek D., Oprzadek J., Zelazowska B., Olbromski R., Zwierzchowski L. (2010): Effect of the g.-723G → T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle. Biochemical Genetics, 48, 450-464. Go to original source... Go to PubMed...
  28. Roy A.K., Chatterjee B. (1995): Androgen action. Critical Reviews in Eukaryotic Gene Expression, 5, 157-176. Go to original source... Go to PubMed...
  29. Sabourin L.A., Rudnicki M.A. (2000): The molecular regulation of myogenesis. Clinical Genetics, 57, 16-25. Go to original source... Go to PubMed...
  30. Sadkowski T., Jank M., Zwierzchowski L., Oprzadek J., Motyl T. (2009a): Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls. Journal of Applied Genetics, 50, 109-123. Go to original source... Go to PubMed...
  31. Sadkowski T., Jank M., Zwierzchowski L., Oprzadek J., Motyl T. (2009b): Transcriptomic index of skeletal muscle of beef breeds bulls. Journal of Physiology and Pharmacology, 60, 15-27.
  32. Soleimani V.D., Punch V.G., Kawabe Y., Jones A.E., Palidwor G.A., Porter C.J., Cross J.W., Carvajal J.J., Kockx C.E.M., van IJcken W.F.J., Perkins T.J., Rigby P.W.J., Grosveld F., Rudnicki M.A. (2012): Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Developmental Cell, 22, 1208-1220. Go to original source... Go to PubMed...
  33. Suryawan A., Davis T.A. (2003): Protein-tyrosine-phosphatase 1B activation is regulated developmentally in muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 284, E47-E54. Go to original source... Go to PubMed...
  34. Teboul L., Hadchouel J., Daubas P., Summerbell D., Buckingham M., Rigby P.W.J. (2002): The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development, 129, 4571-4580. Go to original source... Go to PubMed...
  35. Wyce A., Bai Y., Nagpal S., Thompson C.C. (2010): Research resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Molecular Endocrinology, 24, 1665-1674. Go to original source... Go to PubMed...
  36. Yin H., Zhang Z., Lan X., Zhao X., Wang Y., Zhu Q. (2011): Association of MyF5, MyF6 and MyOG gene polymorphisms with carcass traits in Chinese meat type quality chicken populations. Journal of Animal and Veterinary Advances, 10, 704-708. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.