Czech J. Anim. Sci., 2009, 54(3):112-120 | DOI: 10.17221/1677-CJAS

Changes in methane release from organic matter passing through the digestive tract of horses

L. Kolář, M. Maršálek, J. Frelich, S. Kužel, P. Smetana, J. Zedníková, M. Švecová
Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic

Using the tests of methanogenic activity (TMA) changes in methane yield (YCH4) and anaerobic degradability (Dc) of organic matter of feeds and excrements were studied in an experimental group of six horses while complete analytical methods were applied (N-compound matters, proteins, non-protein N-compound matters, fat, nitrogen-free extract, ash, crude fibre, organic matter, NDF, ADF, hemicelluloses, cellulose, lignin and chemical oxygen demand COD) and the material balance was determined. The horses utilised 48.8% of organic matter of feeds in dry matter while the daily weight of droppings was 21 kg with 5.20% of dry matter and 4 kg of urine with 7% of organic matters. It is important that the theoretical methane yield per 24 hours corresponding to the organic matter of ingested feeds which was transferred to excrements is 1.771 m3 CH4 at 0°C and 1 013.25 hPa while the actual daily methane yield of droppings is 1.739 m3 CH4 at 0°C and 1 013.25 hPa, i.e. practically identical, because the yield from urine organic matters was not included in the actual daily methane yield. Because the anaerobic degradability of the used feed mixture and horse droppings is practically identical, it is obvious that besides the enteric fermentation according to the reaction CO2 + 4 H2 → CH4 + 2 H2O by hydrogenotrophic methanogens no classical anaerobic digestion takes place in the digestive tract of horses; it means that the horse breeding sector is not a factor contaminating the atmosphere by methane.

Keywords: horses; feeds; horse droppings; organic matter; methane yield; anaerobic degradability

Published: March 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kolář L, Maršálek M, Frelich J, Kužel S, Smetana P, Zedníková J, Švecová M. Changes in methane release from organic matter passing through the digestive tract of horses. Czech J. Anim. Sci. 2009;54(3):112-120. doi: 10.17221/1677-CJAS.
Download citation

References

  1. Alcock D., Hegarty R.S. (2006): Effect of pasture improvement on productivity gross margin and methane emissions of a grazing sheep enterprise. Greenhouse Gases and Animal Agriculture. International Congress Series, 1293, 103-106. Go to original source...
  2. Baresi L., Mah R., Ward D., Kaplan I. (1978): Methanogenesis from acetate: Enrichment studies. Applied and Environmental Microbiology, 36, 186-197. Go to original source... Go to PubMed...
  3. Čerešňáková Z., Fľak P., Poláčiková M., Chrenková M. (2005): In sacco NDF degradability and mineral release from selected forages in the rumen. Czech Journal of Animal Science, 50, 320-328. Go to original source...
  4. Čerešňáková Z., Fľak P., Poláčiková M., Chrenková M. (2007): In sacco macromineral release from selected forages. Czech Journal of Animal Science, 52, 175-182. Go to original source...
  5. Dong H., Zhu Z., Tao X., Shang B., Kang G., Shi Y. (2006): Measurement and analysis of methane concentration and flux emitted from finishing pig house. Nongye Geoncheng Xuebao, 22, 123-128.
  6. Dugba P.N., Zhang R. (1999): Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems-thermophilic versus mesophilic operations. Bioresource Technology, 68, 225-233. Go to original source...
  7. Ellis J.L., Kebreab E., Odongo N., McBride B.W., Okine E.K., France J. (2007): Prediction of methane production from dairy and beef cattle. Canadian Journal of Dairy Science, 90, 3456-3467. Go to original source... Go to PubMed...
  8. Farquhar G.J., Rovers F.A. (1973): Gas production during refuse decomposition. Water, Air and Soil Pollution, 2, 483-495. Go to original source...
  9. Garcia J.L., Patel B.K.C., Ollivier B. (2000): Taxonomic, phytogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6, 205-226. Go to original source... Go to PubMed...
  10. Gijzen H.J. (1998): Anaerobic Digestion of Cellulosic Waste by a Rumen-Derived Process. Dissertation Univ. Nijmegen Dept. Microbiol Nijmegen, Netherlands.
  11. Gujer W., Zehnder A.J.B. (1983): Conversion processes in anaerobic digestion. Water Science and Technology, 15, 127-167. Go to original source...
  12. Hegarty R.S., Goopy J.P., Herd R.M., McCorkell B. (2007): Cattle selected for lower residual feed intake have reduced daily methane production. Journal of Animal Science, 85, 1479-1486. Go to original source... Go to PubMed...
  13. Hwang S., Lee Y., Yang K. (2001): Maximisation of acetic acid production in partial acidogenesis of swine wastewater. Biotechnology and Bioengineering, 75, 521-529. Go to original source... Go to PubMed...
  14. Jančík F., Homolka P., Čermák B., Lád F. (2008): Determination of indigestible neutral detergent fibre contents of grasses and its prediction from chemical composition. Czech Journal of Animal Science, 53, 128-135. Go to original source...
  15. Juottonen H., Galand P., Yrjala K. (2006): Detection of methanogenic Archaea in peat. Research in Microbiology, 157, 914-921. Go to original source... Go to PubMed...
  16. Kamalak A., Canbolat O., Gurbuz Y., Ozay O. (2005): Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech Journal of Animal Science, 50, 60-67. Go to original source...
  17. Kalyuzhnyi S., Veeken A., Hamelers B. (2000): Two-particle model of anaerobic solid-state fermentation. Water Science Technology, 41, 43-50. Go to original source...
  18. Kaseng K., Ibrahim K., Pancerselvam S.V., Hassan R.S. (1992): Extracellular enzymes and acidogen profiles of a laboratory-scale two-phase anaerobic digestion system. Proceeding Biochemistry, 27, 43-47. Go to original source...
  19. Kolář L., Klimeš F., Ledvina R., Kužel S. (2003): A method to determine mineralization kinetics of a decomposable part of soil organic matter in the soil. Plant, Soil and Environment, 49, 8-11. Go to original source...
  20. Kolář L., Ledvina R., Kužel S., Klimeš F., Štindl P. (2006): Soil organic matter and its Stability in aerobic and anaerobic Conditions. Soil Water Research, 1, 57-64. Go to original source...
  21. López F., Rodríquez G., Kass M. (1992): Manual de métodos rutinarios. Laboratorio de nutrición animal. CATIE, Turrialba, Costa Rica, 52 pp.
  22. Muenger A., Kreuzer M. (2008): Absence of persistent methane emission differences in three breeds of dairy cows. Australian Journal of Experimental Agriculture, 48, 77-82. Go to original source...
  23. Niwinska B., Strzetelski J.A., Kowalczyk J., Borowiec F., Domański P. (2005): The effect of phenological stage and season on nutritive value, chemical composition and nutrient digestibility of lucerne (Medicago sativa L.) green forage in the alimentary tract of cattle. Czech Journal of Animal Science, 50, 511-518. Go to original source...
  24. Penning H., Conrad R. (2007): Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Organic Geochemistry, 38, 2058-2069. Go to original source...
  25. Sachs L. (1974): Angewandte Statistik. Spinger, Berlin - Heidelberg, New York, 680 pp. Go to original source...
  26. Salminen E., Rintala J., Lokshima L.Y., Vavilin V.A. (2000): Anaerobic batch degradation of solid poultry slaughterhouse waste. Water Science and Technology, 41, 33-41. Go to original source...
  27. Schachermayer E., Baumeler A., Kisliakova A. (1999): Reduction of Greenhouse Gas Emissions by Waste Management Optimisation. In: Proc. Vth Int. Landfill Symposium. Margherita di Pula, Sardinia, Italy, 4, 3-10.
  28. Schink B. (1997): Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262-280. Go to original source... Go to PubMed...
  29. Sedláček M. (1978): Methods of analysis of sludge and firm wastes. SNTL, Praha, 706 pp. (in Czech)
  30. Straka F., Dohányos M., Zábranská J., Dědek J., Malijevský A., Novák J., Oldřich J. (2003): Biogas. GAS, Říčany, 526, 517 pp. (in Czech)
  31. Süssmuth R., Doser Ch., Lueders T. (1999): Determination of the biological biodegradability of organic substances under anaerobic conditions using the Oxi Top Control measuring system. Universität Hohenheim, Inst. für Mikrobiologie, Wissenschaftlich-Technische Werkstäten GmbH and Co., KG Weilheim, Germany.
  32. Třináctý J., Richter M., Homolka P., Rabišková M., Doležal P. (2005a): Comparison of the apparent and true digestibility of nutrients determined in dairy cows either by the nylon capsule or in vivo method. Czech Journal of Animal Science, 50, 402-410. Go to original source...
  33. Třináctý J., Richter M., Pozdíšek J., Kowalski Z.M., Fajmonová E. (2005b): A comparison of passage parameters of nylon capsules and digesta calculated from faecal excretion data obtained in lactating cows. Czech Journal of Animal Science, 50, 450-458. Go to original source...
  34. Umemura M., Funahashi J., Yagi A. (2006): Greenhouse effect gas, methane from water environments. Mizu Shori Gijutsu, 47, 1-14.
  35. Van Soest P.J. (1963): Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.