Czech J. Anim. Sci., 2025, 70(1):33-41 | DOI: 10.17221/59/2024-CJAS

Association between polymorphism within rabbit IGF1 gene and slaughter weight in Termond White rabbitsOriginal Paper

Anna Migdał ORCID...1, Sylwia Ewa Pałka ORCID...1, Michał Kmiecik ORCID...1, Olga Jarnecka ORCID...1, Ewelina Semik-Gurgul ORCID...2, Łukasz Migdał ORCID...1
1 Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Krakow, Poland
2 Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland

Growth traits belong to the most important economic traits in livestock. One of the genes involved in vertebrate growth and development is insulin-like growth factor 1 (IGF1). Therefore, in our study we hypothesised that within the sequence of rabbit IGF1 gene it is possible to identify a polymorphism that may influence growth, carcass or meat traits in rabbits. We identified 6 polymorphisms (g.89259430T>C; g.89259338C>G; g.89259328T>C; 89210029A>G; 89210349C>G and g.89194199C>T) within introns of the IGF1 gene. One polymorphism, g.89194199C>T, was analysed using polymerase chain reaction high-resolution melting (PCR-HRM). We performed the association analysis on 370 animals (males to females 1 : 1) of different breeds: New Zealand White × Flemish Giant crossbreds (NZW × FG), Termond White (TW) and Flemish Giant (FG). Results showed that for growth and slaughter traits in TW populations a significant association (P = 0.003) was found for slaughter weight (SW) when CT genotypes showed significantly higher values compared to CC genotypes (2 878.0 g ± 107.0 and 2 678.0 g ± 34.0, respectively). For TW rabbits we found a significant association (P = 0.009) for dissected bone weight in hind leg (HB) when CT genotypes (127.0 g ± 5.8) had significantly higher values compared to CC genotypes (112.0 g ± 2.4). For carcass traits and physical characteristics of meat we found for musculus longissimus lumborum in TW rabbits that the b* parameter value 45 min after slaughter was significantly higher (P = 0.001) for CT genotypes (1.88 ± 0.05) compared to CC genotypes (0.05 ± 0.02). We conclude that the use of identified SNP in breeding may be limited to some breeds.

Keywords: association analysis; growth traits; insulin like growth factor 1; meat traits oryctolagus cuniculus; SNP

Received: April 23, 2024; Accepted: December 16, 2024; Prepublished online: January 24, 2025; Published: January 30, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Migdał A, Pałka SE, Kmiecik M, Jarnecka O, Semik-Gurgul E, Migdał Ł. Association between polymorphism within rabbit IGF1 gene and slaughter weight in Termond White rabbits. Czech J. Anim. Sci. 2025;70(1):33-41. doi: 10.17221/59/2024-CJAS.
Download citation

References

  1. Baxter R C. The insulin-like growth factors and their binding proteins. Comp Biochem Physiol B. 1988 Mar; Go to original source... Go to PubMed...
  2. 91(2):229-35.
  3. Bian L H, Wang S Z, Wang Q G, Zhang S, Wang Y X, Li H. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. J Anim Breed Genet. 2008 Aug;125:265-70. Go to original source... Go to PubMed...
  4. Bhattacharya T K, Chatterjee R N, Dushyanth K, Paswan C, Shukla R, Shanmugam M. Polymorphism and expression of insulin-like growth factor 1 (IGF1) gene and its association with growth traits in chicken. Br Poult Sci. 2015 Jun;56(4):398-407. Go to original source... Go to PubMed...
  5. Blasco A, Nagy I, Hernandez P. Genetics of growth, carcass and meat quality in rabbits. Meat Sci. 2018 Nov;145:178-85. Go to original source... Go to PubMed...
  6. Cannata D, Lann D, Wu Y, Elis S, Sun H, Yakar S, Lazzarino D A, Wood T L, Leroith D. Elevated circulating IGF-I promotes mammary gland development and proliferation. Endocrinology. 2010 Dec;151(12):5751-61. Go to original source... Go to PubMed...
  7. Chodova D, Tumova E, Martinec M, Bízkova Z, Skrivanova V, Volek Z, Zita L. Effect of housing system and genotype on rabbit meat quality. Czech J Anim Sci. 2014 Apr;59(4):190-99. Go to original source...
  8. Ballan M, Schiavo G, Bovo S, Schiavitto M, Negrini R, Frabetti A, Fornasini D, Fontanesi L. Comparative analysis of genomic inbreeding parameters and runs of homozygosity islands in several fancy and meat rabbit breeds. Anim Genet. 2022 Dec;53(6):849-62. Go to original source... Go to PubMed...
  9. Duan X, An B, Du L, Chang T, Liang M, Yang B-G, Xu L, Zhang L, Li J, Gao H. Genome-wide association analysis of growth curve parameters in Chinese Simmental beef cattle. Animals (Basel). 2021 Jan;11:192. Go to original source... Go to PubMed...
  10. El-Sabrout K, Aggag S A. The gene expression of weaning age and its effect on productive performance of rabbits. World Rabbit Sci. 2017 Mar;25(1):1-7. Go to original source...
  11. European Commission, Directorate-General for Health and Food Safety, Publications Office. Commercial rabbit farming in the European Union: overview report. 2017.
  12. Fatima N, Jia L, Liu B, Li L, Bai L, Wang W, Zhao S, Wang R, Liu E A. Homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits. BMC Genomics. 2023 Jun;24:298. Go to original source... Go to PubMed...
  13. Fernandez-Barroso MA, Caraballo C, Silio L, Rodriguez C, Nunez Y, Sanchez-Esquiliche F, Matos G, Garcia-Casco JM, Munoz M. Differences in the loin tenderness of Iberian pigs explained through dissimilarities in their transcriptome expression profile. Animals (Basel). 2020 Sep;10(9):1715. Go to original source... Go to PubMed...
  14. Fontanesi L, Mazzoni G, Bovo S, Frabetti A, Fornasini D, Dall'Olio S, Russo V. Association between a polymorphism in the IGF2 gene and finishing weight in a commercial rabbit population. Anim Genet. 2012 Oct;43(5):651-52. Go to original source... Go to PubMed...
  15. Fontanesi L, Scotti E, Cisarova K, Di Battista P, Dall'olio S, Fornasini D, Frabetti A. A missense mutation in the rabbit melanocortin 4 receptor (MC4R) gene is associated with finishing weight in a meat rabbit line. Anim Biotechnol. 2013;24(4):268-77. Go to original source... Go to PubMed...
  16. Gorecki D C, Beresewicz M, Zablocka B. Neuroprotective effects of short peptides derived from the insulin-like growth factor 1. Neurochem Int. 2007 Dec;51(8):451-58. Go to original source... Go to PubMed...
  17. Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernande C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 genes polymorphisms and growth performance of broiler chicken lines. Animals (Basel). 2020 May;10:800. Go to original source... Go to PubMed...
  18. Islam K K, Vinsky M, Crews R E, Okine E, Moore S S, Crews D H Jr, Li C. Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid Angus and Charolais beef cattle. Anim Genet. 2009 Oct;40(5):766-69. Go to original source... Go to PubMed...
  19. Kasarda R, Moravcikova N, Olsanska B, Meszaros G, Vostry L, Vostra-Vydrova H, Lehocka K, Pristak J, Candrak J. The evaluation of genomic diversity and selection signals in the autochthonous Slovak Spotted cattle. Czech J Anim Sci. 2021 Jul;66(7):251-61. Go to original source...
  20. Kowalska D, Bielanski P. Study on the possibility of using the native Popielno White rabbit breed in commercial farming. Ann Anim Sci. 2011 Apr;11(2):309-22.
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018 Jun 1;35(6):1547-49. Go to original source... Go to PubMed...
  22. Li K, Liu Y, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. A novel SNP in the promoter region of IGF1 associated with Yunshang Black Goat kidding number via promoting transcription activity by SP1. Front Cell Dev Biol. 2022 May;12(10):873095. Go to original source... Go to PubMed...
  23. Liao Y, Wang Z, Gloria L S, Zhang K, Zhang C, Yang R, Luo X, Jia X, Lai S-J, Chen S-Y. Genome-wide association studies for growth curves in meat rabbits through the single-step nonlinear mixed model. Front Genet. 2021 Oct;12:750939. Go to original source... Go to PubMed...
  24. Mancin E, Sosa-Madrid B S, Blasco A, Ibanez-Escriche N. Genotype imputation to improve the cost-efficiency of genomic selection in rabbits. Animals (Basel). 2021 Mar 13;11(3):803. Go to original source... Go to PubMed...
  25. Migdal L, Koziol K, Migdal W, Palka S, Kmiecik M, Migdal A, Bieniek J. Rabbits breeding in Poland - Possibility of implementation of marker assisted selection (MAS) in breeding. In: Proceedings of the 11th International Symposium - Modern Trends in Livestock Production; Oct 11-13, 2017; Belgrad, Serbia: 346-55.
  26. Migdal L, Palka S, Kmiecik M, Derewicka O. Association of polymorphisms in the GH and GHR genes with growth and carcass traits in rabbits (Oryctolagus cuniculus). Czech J Anim Sci. 2019 Jun;64(6):255-64. Go to original source...
  27. Naicy T, Venkatachalapathy T, Aravindakshan T, Raghavan K. Molecular cloning, SNP detection and association analysis of 5 flanking region of the goat IGF1 gene with prolificacy. Anim Reprod Sci. 2016 Apr;167:8-15. Go to original source... Go to PubMed...
  28. Nixon AJ, Brower-Toland BD, Sandell LJ. Primary nucleotide structure of predominant and alternate splice forms of equine insulin-like growth factor I and their gene expression patterns in tissues. Am J Vet Res 1999 Oct;60(10):1234-41. Go to original source...
  29. Posta J, Szabo N A, Jurasko R. Pedigree based diversity of Debrecen White rabbit. Czech J Anim Sci. 2024 Jul;69:317-22. Go to original source...
  30. Purslow PP, Warner RD, Clarke FM, Hughes JM. Variations in meat colour due to factors other than myoglobin chemistry; A synthesis of recent findings (invited review). Meat Sci. 2020 Jan;159:107941. Go to original source... Go to PubMed...
  31. Sato S, Ohtake T, Uemoto Y, Okumura Y, Kobayashi E. Polymorphism of insulin-like growth factor 1 gene is associated with breast muscle yields in chickens. Anim Sci J. 2012 Jan;83:1-6. Go to original source... Go to PubMed...
  32. Serrote CML, Reiniger LRS, Silva KB, Rabaiolli SMDS, Stefanel CM. Determining the polymorphism information content of a molecular marker. Gene. 2020 Feb;5(726):144175. Go to original source... Go to PubMed...
  33. Siadkowska E, Zwierzchowski L, Oprzadek J, Strzalkowska N, Bagnicka E, Krzyzewski J. Effect of polymorphism in IGF-1 gene on production traits in Polish Holstein-Friesian cattle. Anim Sci Pap Rep. 2006;24(3):225-37.
  34. Sosa-Madrid B, Hernandez P, Blasco A, Haley C S, Fontanesi L, Santacreu MA, Pena RN, Navarro P, Ibanez-Escriche N. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Anim Genet. 2020 Feb;51(1):58-69. Go to original source... Go to PubMed...
  35. Szendro Z, Metzger S, Nagy I, Szabo A, Petrasi Z, Donko T, Horn P. Effect of divergent selection for the computer tomography measured thigh muscle volume on productive and carcass traits of growing rabbits. Livest Sci. 2012 Nov;149(1-2):167-72. Go to original source...
  36. Tomka J, Huba J, Pavlik I. The state of conservation of animal genetic resources in Slovakia. Genet Resour. 2022 Sept;3(6):49-63. Go to original source...
  37. Wu ZL, Chen SY, Jia XB, Lai SJ. Association of a synonymous mutation of the PGAM2 gene and growth traits in rabbits. Czech J Anim Sci. 2015 Mar;60(3):139-44. Go to original source...
  38. Yang X, Deng F, Wu Z, Chen S Y, Shi Y, Jia X, Hu S, Wang J, Cao W, Lai S J. A genome-wide association study identifying genetic variants associated with growth, carcass and meat quality traits in rabbits. Animals (Basel). 2022 Jun;10(6):1068. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.