Czech J. Anim. Sci., 2023, 68(7):296-305 | DOI: 10.17221/148/2022-CJAS

Dietary supplementation of natural tannin relieved intestinal injury and oxidative stress in piglets challenged with enterotoxigenic Escherichia coliOriginal Paper

Qian Zhang1, Lin Zhang2, Linxiao Du1, Yanyan Zhang1, Dan Yi1, Di Zhao1, Binying Ding1, Yongqing Hou1, Tao Wu1
1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Centre of Feed Protein Resources on Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
2 Yangtze River Fisheries Research Institute, Chinese Academy Of Fishery Sciences, Wuhan, P.R. China

This study is to explore the effects of natural tannin (NBT) on intestinal injury in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two 7-day-old piglets were divided into four groups: I) control group, piglets were fed a basic diet without challenge; II) ETEC group, piglets were fed a basic diet and challenged with enterotoxigenic E. coli; III) NBT + ETEC group, piglets were fed a basic diet with supplementation of 2 g/kg NBT and challenged with enterotoxigenic E. coli; and IV) ZnO + ETEC group, piglets were fed a basic diet with supplementation of 3 g/kg ZnO and challenged with enterotoxigenic E. coli. Results showed that diarrhoea rate was significantly increased in ETEC group, whereas it was decreased after NBT supplementation (P < 0.05); NBT supplementation significantly increased the average daily gain of ETEC-infected piglets. ETEC group showed damaged intestinal morphology (as indicated by decreased villus height, surface area and increased crypt depth) and barrier function (as indicated by decreased d-xylose content and increased diamine oxidase activity), induced oxidative stress (as indicated by increased myeloperoxidase activity) while supplementation of NBT had an obvious impact on the recovery of intestinal function and alleviated the oxidative damage. Further analysis showed that NBT could decrease the expression of genes related to intestinal injury (matrix metalloproteinase-3), and specifically upregulate the expression of oxidative stress-related genes (nuclear factor erythroid 2-related factor 2 and hypoxia inducible factor-1). Overall, dietary supplementation of NBT relieved intestinal injury and oxidative stress in piglets challenged with ETEC. NBT could be an alternative to ZnO as a feed additive in piglet diet.

Keywords: tannins; intestine; oxidative stress; ETEC; piglets

Received: September 17, 2022; Accepted: May 22, 2023; Prepublished online: July 20, 2023; Published: July 27, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhang Q, Zhang L, Du L, Zhang Y, Yi D, Zhao D, et al.. Dietary supplementation of natural tannin relieved intestinal injury and oxidative stress in piglets challenged with enterotoxigenic Escherichia coli. Czech J. Anim. Sci. 2023;68(7):296-305. doi: 10.17221/148/2022-CJAS.
Download citation

References

  1. Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, Simon F. Oxidative stress in disease and aging: Mechanisms and therapies. Oxid Med Cell Longev. 2016 Jan;2016: 8786564. Go to original source... Go to PubMed...
  2. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018 Feb;27(2):281-98. Go to original source... Go to PubMed...
  3. Das AK, Islam MN, Faruk MO, Ashaduzzaman M, Dungani R. Review on tannins: Extraction processes, applications and possibilities. S Afr J Bot. 2020 Dec;135:58-70. Go to original source...
  4. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005 Aug;15(4):316-28. Go to original source... Go to PubMed...
  5. Frankic T, Salobir J. In vivo antioxidant potential of Sweet chestnut (Castanea sativa Mill.) wood extract in young growing pigs exposed to n-3 PUFA-induced oxidative stress. J Sci Food Agric. 2011 Jun;91(8):1432-9. Go to original source... Go to PubMed...
  6. Girard M, Bee G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs. Animal. 2020 Jan;14(1):95-107. Go to original source... Go to PubMed...
  7. Goel G, Puniya AK, Aguilar CN, Singh K. Interaction of gut microflora with tannins in feeds. Naturwissenschaften. 2005 Nov;92(11):497-503. Go to original source... Go to PubMed...
  8. Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr. 2018 Jun;4(2):137-50. Go to original source... Go to PubMed...
  9. Huntley NF, Patience JF. Xylose: Absorption, fermentation, and post-absorptive metabolism in the pig. J Anim Sci Biotechnol. 2018 Jan;9: 9 p. Go to original source... Go to PubMed...
  10. Jansman AJ, Verstegen MW, Huisman J, van den Berg JW. Effects of hulls of faba beans (Vicia faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal digesta and feces of pigs. J Anim Sci. 1995 Jan;73(1):118-27. Go to original source... Go to PubMed...
  11. Kitanaka J, Kitanaka N, Tsujimura T, Terada N, Takemura M. Expression of diamine oxidase (histaminase) in guinea-pig tissues. Eur J Pharmacol. 2002 Feb;437(3):179-85. Go to original source... Go to PubMed...
  12. Lutgens L, Lambin P. Biomarkers for radiation-induced small bowel epithelial damage: An emerging role for plasma Citrulline. World J Gastroenterol. 2007 Jun;13(22):3033-42. Go to original source... Go to PubMed...
  13. Lv Y, Li X, Zhang L, Shi Y, Du L, Ding B, Hou Y, Gong J, Wu T. Injury and mechanism of recombinant E. coli expressing STa on piglets colon. J Vet Med Sci. 2018 Feb;80(2):205-12. Go to original source... Go to PubMed...
  14. Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agri. 2006 Aug 7;86(13):2010-37. Go to original source...
  15. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021 Mar 25;22(7): 30 p. Go to original source... Go to PubMed...
  16. Pithayanukul P, Nithitanakool S, Bavovada R. Hepatoprotective potential of extracts from seeds of Areca catechu and nutgalls of Quercus infectoria. Molecules. 2009 Dec;14(12):4987-5000. Go to original source... Go to PubMed...
  17. Raleigh SM, van der Merwe L, Ribbans WJ, Smith RK, Schwellnus MP, Collins M. Variants within the MMP3 gene are associated with Achilles tendinopathy: Possible interaction with the COL5A1 gene. Br J Sports Med. 2009 Jul;43(7):514-20. Go to original source... Go to PubMed...
  18. Robledinos-Anton N, Fernandez-Gines R, Manda G, Cuadrado A. Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid Med Cell Longev. 2019 Jul 14;2019: 21 p. Go to original source... Go to PubMed...
  19. Schiavone A, Guo K, Tassone S, Gasco L, Hernandez E, Dent R, Zoccarato I. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poult Sci. 2008 Mar;87(3):521-7. Go to original source... Go to PubMed...
  20. Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol. 2018 Oct;69(4):886-95. Go to original source... Go to PubMed...
  21. Vancamelbeke M, Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017 Sep;11(9):821-34. Go to original source... Go to PubMed...
  22. Walton KD, Freddo AM, Wang S, Gumucio DL. Generation of intestinal surface: An absorbing tale. Development. 2016 Jul;143(13):2261-72. Go to original source... Go to PubMed...
  23. Wu T, Zhang Y, Lv Y, Li P, Yi D, Wang L, Zhao D, Chen H, Gong J, Hou Y. Beneficial impact and molecular mechanism of Bacillus coagulans on piglets' intestine. Int J Mol Sci. 2018a Jul 18;19(7): 17 p. Go to original source... Go to PubMed...
  24. Wu T, Lv Y, Li X, Zhao D, Yi D, Wang L, Li P, Chen H, Hou Y, Gong J, Wu G. Establishment of a recombinant Escherichia coli-induced piglet diarrhea model. Front Biosci. 2018b Mar;23(8):1517-34. Go to original source... Go to PubMed...
  25. Wu T, Li K, Yi D, Wang L, Zhao D, Lv Y, Zhang L, Chen H, Ding B, Hou Y, Wu G. Dietary supplementation with trihexanoin enhances intestinal function of weaned piglets. Int J Mol Sci. 2018c Oct 22;19(10): 12 p. Go to original source... Go to PubMed...
  26. Wu W, Xiao Z, An W, Dong Y, Zhang B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS One. 2018d May 24;13(5): 21 p. Go to original source... Go to PubMed...
  27. Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J. 2018 Jun 19;15(1): 7 p. Go to original source... Go to PubMed...
  28. Xie J, Li M, Han C. Chinese internal medicine (International Standard Library of Chinese Medicine). Beijing: People's Medical Publishing House; 2013. Chapter 7; 59 p.
  29. Yang Z, Liao SF. Physiological effects of dietary amino acids on gut health and functions of swine. Front Vet Sci. 2019 Jun 11;6: 13 p. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.