Czech J. Anim. Sci., 2022, 67(6):209-217 | DOI: 10.17221/1/2022-CJAS

A meta-analysis of heat stress in dairy cattle: The increase in temperature humidity index affects both milk yield and some physiological parametersOriginal Paper

Ersin Kulaz1, Gazel Ser ORCID...*,2
1 Department of Animal Science, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey
2 Department of Animal Science, Graduate School of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, Turkey

In this study, the relationships of temperature humidity index (THI) with milk yield and some physiological responses in dairy cattle were investigated. Our goal in the meta-analysis was to find the parameter(s) primarily affected under heat stress. A total of 16 studies with the temperature humidity index value higher than 72, which is an important factor in determining the effect of heat stress, were included in the meta-analysis. The variables of interest in the meta-analysis included: milk yield (kg/day), respiratory rate (breaths/min), rectal temperature (°C). In addition to the meta-analysis, principal component analysis (PCA) was also performed. In the meta-analysis, high variation or heterogeneity (I2 > 99%) was determined between the results of the studies. This may depend on many factors (climate, region, number of samples and management etc.). Heterogeneity is desirable in the meta-analysis, because it provides accurate and reliable interpretations of the variances of parameters. Due to high heterogeneity, the results of the studies were combined according to the mixed model. According to the mixed model and PCA results, a linear relationship was determined between the temperature humidity index and these physiological parameters. According to the meta-analysis, at THI > 72, the mean effect size of milk yield was 50%, and the effect sizes of respiratory rate and rectal temperature were approximately 65% and 38%. All three parameters have a significant effect under heat stress (P < 0.000 1). As a result, there is a linear relationship between temperature humidity index, milk yield and physiological parameters. According to the other characteristics, the respiratory rate was determined as the primary response parameter in parallel with the increase in temperature humidity index.

Keywords: heat stress; dairy cow; metadata; correlation

Published: June 29, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kulaz E, Ser G. A meta-analysis of heat stress in dairy cattle: The increase in temperature humidity index affects both milk yield and some physiological parameters. Czech J. Anim. Sci. 2022;67(6):209-217. doi: 10.17221/1/2022-CJAS.
Download citation

References

  1. Ahmed BMS, Younas U, Asar TO, Dikmen S, Hansen PJ, Dahl GE. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance. J Anim Sci. 2017 Aug 1; 95(8):3497-503. Go to original source... Go to PubMed...
  2. Amamou H, Beckers Y, Mahouchi M, Hammami H. Thermotolerance indicators related to production and physiological responses to heat stress of holstein cows. J Therm Biol. 2019 May 1;82:90-8. Go to original source... Go to PubMed...
  3. Armstrong DV. Heat stress interaction with shade and cooling. J Dairy Sci. 1994 Jul 1;77(7):2044-50. Go to original source... Go to PubMed...
  4. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954 Mar 1;10(1):101-29. Go to original source...
  5. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. 187 p.
  6. Cook NB, Mentink RL, Bennett TB, Burgi K. The effect of heat stress and lameness on time budgets of lactating dairy cows. Int J Dairy Sci. 2007 Apr 1;90(4):1674-82. Go to original source... Go to PubMed...
  7. Dado-Senn B, Ouellet V, Dahl GE, Laporta J. Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling. J Dairy Sci. 2020 Sep 1;103(9):8587-600. Go to original source... Go to PubMed...
  8. de Andrade Ferrazza R, Garcia HDM, Aristizabal VHV, de Souza Nogueira C, Verissimo CJ, Sartori JR, Sartori R, Ferreira JCP. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J Therm Biol. 2017 May 1;66:68-80. Go to original source... Go to PubMed...
  9. do Amaral BC, Connor EE, Tao S, Hayen MJ, Bubolz JW, Dahl GE. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J Dairy Sci. 2011 Jan;94(1):86-96. Go to original source... Go to PubMed...
  10. Ekine-Dzivenu CC, Mrode R, Oyieng E, Komwihangilo D, Lyatuu E, Msuta G, Ojango JM, Okeyo AM. Evaluating the impact of heat stress as measured by temperaturehumidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate. Livest Sci. 2020 Dec 1;242: 7 p. Go to original source... Go to PubMed...
  11. Gantner V, Bobic T, Gantner R, Gregic M, Kuterovac K, Novakovic J, Potocnik K. Differences in response to heat stress due to production level and breed of dairy cows. Int J Biometeorol. 2017 Sep;61(9):1675-85. Go to original source... Go to PubMed...
  12. Gaughan JB, Holt S, Hahn GL, Mader TL, Eigenberg R. Respiration rate: Is it a good measure of heat stress in cattle? Asian-Australas J Anim Sci. 2000 Jan 1;13(Suppl. C):329-32.
  13. Gebremedhin KG, Lee CN, Hillman PE, Collier RJ. Physiological responses of dairy cows during extended solar exposure. Trans ASABE. 2010;53(1):239-47. Go to original source...
  14. Godyn D, Herbut P, Angrecka S. Measurements of peripheral and deep body temperature in cattle - A review. J Therm Biol. 2019 Jan 1;79:42-9. Go to original source... Go to PubMed...
  15. Hall LW, Villar F, Chapman JD, McLean DJ, Long NM, Xiao Y, Collier JL, Collier RJ. An evaluation of an immunomodulatory feed ingredient in heat-stressed lactating Holstein cows: Effects on hormonal, physiological, and production responses. J Dairy Sci. 2018 Aug 1;101(8):7095-105. Go to original source... Go to PubMed...
  16. Hedges LV, Olkin I. Statistical methods for meta-analysis. San Diego, CA: Academic Press; 1985. 369 p.
  17. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003 Sep 4; 327(7414):557-60. Go to original source... Go to PubMed...
  18. Kaiser HF, Rice J. Little jiffy, mark IV. Educ Psychol Meas. 1974 Apr;34(1):111-7. Go to original source...
  19. Kaufman JD, Bailey HR, Kennedy AM, Loffler FE, Rius AG. Cooling and dietary crude protein affected milk production on heat-stressed dairy cows. Livest Sci. 2020 Oct 1; 240: 104-111. Go to original source...
  20. Khan N, Kewalramani N, Mahajan V, Haq Z, Kumar B. Effect of supplementation of niacin on physiological and blood biochemical parameters in crossbred cows during heat stress. Indian J Anim Sci. 2018 Jan 1;88(1):68-75 Go to original source...
  21. Le S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008 Mar 18;25(1):1-18. Go to original source...
  22. Liang D, Wood CL, McQuerry KJ, Ray DL, Clark JD, Bewley JM. Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J Dairy Sci. 2013 Aug 1;96(8):5072-81. Go to original source... Go to PubMed...
  23. Lipsey MW, Wilson DB. Practical meta-analysis. Thousand Oaks, USA: Sage Publications; 2001. 264 p.
  24. Liu J, Li L, Chen X, Lu Y, Wang D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress - A review. Asian-Australas J Anim Sci. 2019 Sep;32(9):1332-9. Go to original source... Go to PubMed...
  25. Mylostyvyi R, Izhboldina O, Chernenko O, Khramkova O, Kapshuk N, Hoffman G. Microclimate modeling in naturally ventilated dairy barns during the hot season: Checking the accuracy of forecasts. J Therm Biol. 2020 Sep 12;93: 10 p. Go to original source... Go to PubMed...
  26. Najar T, Rejeb M, Ben M. Modelling of the effects of heat stress on some feeding behaviour and physiological parameters in cows. In: Sauvant D, Van Milgen J, Faverdin P, Friggens N, editors. Modelling nutrient digestion and utilisation in farm animal. Wageningen, Netherlands: Wageningen Academic Publishers; 2011. p. 130-6. Go to original source...
  27. NRC - National Research Council. A guide to enviromental research on animals. Wahington, DC: National Academy of Sciences; 1971. 208 p.
  28. Osei-Amponsah R, Dunshea FR, Leury BJ, Cheng L, Cullen B, Joy A, Abhijith A, Zhang MH, Chauhan SS. Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals. 2020 May;10(5): 12 p. Go to original source... Go to PubMed...
  29. Pan L, Bu DP, Wang JQ, Cheng JB, Sun XZ, Zhou LY, Qin JJ, Zhang XK, Yuan YM. Effects of Radix Bupleuri extract supplementation on lactation performance and rumen fermentation in heat-stressed lactating Holstein cows. Anim Feed Sci Technol. 2014 Jan 1;187:1-8. Go to original source...
  30. Perano KM, Usack JG, Angenent LT, Gebremedhin KG. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling. J Dairy Sci. 2015 Aug 1;98(8):5252-61. Go to original source... Go to PubMed...
  31. Pinto S, Hoffmann G, Ammon C, Amon T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J Therm Biol. 2020 Feb 1;88:102523. Go to original source... Go to PubMed...
  32. Romo-Barron CB, Diaz D, Portillo-Loera JJ, Romo-Rubio JA, Jimenez-Trejo F, Montero-Pardo A. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int J Biometeorol. 2019 Jul;63(7):949-62. Go to original source... Go to PubMed...
  33. Shapasand M, Alizadeh AR, Yousefi M, Amini J. Performance and physiological responses of dairy cattle to water total dissolved solids (TDS) under heat stress. J Appl Anim Res. 2010 Dec 1;38(2):165-8. Go to original source...
  34. West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003 Jun 1;86(6):2131-44. Go to original source... Go to PubMed...
  35. Wheelock JB, Rhoads RP, Vanbaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010 Feb;93(2):644-55. Go to original source... Go to PubMed...
  36. Yan G, Li H, Zhao W, Shi Z. Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. Int J Biometeorol. 2020 Dec;64(12):2077-91. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.