Czech J. Anim. Sci., 2020, 65(7):247-257 | DOI: 10.17221/111/2020-CJAS
Choice feeding in fattening pigs: Effect of diets differing in nutrient density on feeding behaviour and fattening performanceOriginal Paper
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), Department for Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
The aim of this study was to determine the proportion of feed consumed by pigs when they had the choice to meet their nutrient requirements offering a low (LND) or a high (HND) nutrient dense diet on animal performance and feeding behaviour. In total 120 barrows and gilts were allotted to three dietary treatments (LND, HND and a feed choice group, FC). Diets were calculated to keep a constant ratio of megajoule net energy (MJ NE) to nutrient standardised ileal digestible (SID) lysine, SID methionine and cysteine, SID threonine, SID tryptophan, Ca, available P and Na. Pigs of the feed choice treatment that could choose between LND and HND chose an energy content between 13.3 and 13.6 MJ ME or rather 10.1 and 10.4 MJ NE. The ratio between LND and HND changed during the growing period to a higher percentage of HND (26.2% : 73.8% in the starter, 22.0% : 78.0% in the grower and 20.0% : 80.0% in the finisher phase). No differences between barrows and gilts were detected regarding the selected diet. As a result, similar zootechnical performance data were observed for HND and FC, whereas LND led to a declined (P < 0.05) performance. Regarding the feeding behaviour no differences in the parameters meal size and daily feeder visits between LND and HND (P > 0.1) were observed. However, within the FC treatment more and greater meals were consumed (P < 0.05) at the HND feeder compared to the LND feeder. Pigs of modern genetics still have the ability to cover their nutrient requirements choosing between diets differing in nutrient density without impairing performance. Furthermore, the results give no indication for the necessity of different energy levels in diets for sexed pigs.
Keywords: dietary fibre; energy demand; nutrient self-supply
Published: July 31, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Bach Knudsen KE, Jensen BB, Hansen I. Digestion of polysaccarides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in β-D-glucan. Br J Nutr. 1993 Sep;70(2):537-56.
Go to original source...
Go to PubMed...
- Beaulieu AD, Williams NH, Patience JF. Response to dietary digestible energy concentration in growing pigs fed cereal grain-based diets. J Anim Sci. 2009 Mar 1;87(3):965-76.
Go to original source...
Go to PubMed...
- Bigelow JA, Houpt TR. Feeding and drinking patterns in young pigs. Physiol Behav. 1988 Jan 1;43(1):99-109.
Go to original source...
Go to PubMed...
- Blokhuis H, Nunes T, Bracke MBM, Sanaa M, Edwards S, Gunn M, Martineau GP, Mendl M, Prunier A. Scientific report on the risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems. EFSA J. 2007 Dec;5(12):1-13.
Go to original source...
- Castillo M, Martin-Orue SM, Anguita M, Perez JF, Gasa J. Adaptation of gut microbiota to corn physical structure and different types of dietary fibre. Livest Sci. 2007 May 15;109(1-3):149-52.
Go to original source...
- de Haer LCM, de Vries AG. Effects of genotype and sex on the feed intake pattern of group housed growing pigs. Livest Prod Sci. 1993a Sep 1;36(3):223-32.
Go to original source...
- de Haer LCM, de Vries AG. Feed intake patterns of and feed digestibility in growing pigs housed individually or in groups. Livest Prod Sci. 1993b Feb 1;33(3-4):277-92.
Go to original source...
- de Haer LCM, Merks JWM. Patterns of daily food intake in growing pigs. Anim Sci. 1992 Feb 1;54(1):95-104.
Go to original source...
- Ettle T, Roth FX. Dietary selection for lysine by piglets at differing feeding regimen. Livest Sci. 2009 Jun 1;122 (2-3):259-63.
Go to original source...
- Ferguson NS, Nelson L, Gous RM. Diet selection in pigs: Choices made by growing pigs when given foods differing in nutrient density. Anim Sci. 1999 Jun;68(4):691-9.
Go to original source...
- GfE. Proceedings of the Society of Nutrition Physiology Vol. 17: Recommendations for the supply of energy and nutrients to pigs. Frankfurt am Main: DLG-Verlag; 2006. 215 p.
- Graves HB. Behaviour and ecology of wild and feral swine (sus scrofa). J Anim Sci. 1984 Feb 1;58(2):482-92.
Go to original source...
- Henry Y. Dietary factors involved in feed intake regulation in growing pigs: A review. Livest Prod Sci. 1985 Jun 1; 12(4):339-54.
Go to original source...
- Hyun Y, Ellis M, McKeith FK, Wilson ER. Feed intake pattern of group-housed growing-finishing pigs monitored using a computerized feed intake recording system. J Anim Sci. 1997 Jun 1;75(6):1443-51.
Go to original source...
Go to PubMed...
- Kallabis KE, Kaufmann O. Effect of a high-fibre diet on the feeding behaviour of fattening pigs. Arch Anim Bred. 2012 Oct 10;55(3):272-84.
Go to original source...
- Kyriazakis I, Emmans G. The voluntary feed intake of pigs given feed based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. Br J Nutr. 1995 Feb;73(2):191-207.
Go to original source...
Go to PubMed...
- Kyriazakis I, Emmans GC, Whittemore CT. Diet selection in pigs - Choices made by growing pigs given foods of different protein concentrations. Anim Prod. 1990 Aug; 51(1):189-99.
Go to original source...
- Labroue F, Gueblez R, Sellier P, Meunier-Salaun MC. Feeding behaviour of group-housed large white and landrace pigs in french central test stations. Livest Prod Sci. 1994 Dec 1;40(3):303-12.
Go to original source...
- Laitat M, Antoine N, Cabaraux JF, Cassart D, Mainil J, Moula N, Nicks B, Wavreille J, Philippe FX. Influence of sugar beet pulp on feeding behavior, growth performance, carcass quality and gut health of fattening pigs. Biotechnol Agron Soc Environ. 2015;19(1):20-31.
- McLaughlin CL, Baile CA, Buckholtz LL, Freeman SK. Preferred flavors and performance of weanling pigs. J Anim Sci. 1983 Jun 1;56(6):1287-93.
Go to original source...
Go to PubMed...
- Noblet J, Fortune H, Shi XS, Dubois S. Prediction of net energy value of feeds for growing pigs. J Anim Sci. 1994 Feb 1;72(2):344-54.
Go to original source...
Go to PubMed...
- Noblet J, Le Goff GI. Effect of dietary fibre on the energy value of feeds for pigs. Anim Feed Sci Tech. 2001 Mar 15; 90(1-2):35-52.
Go to original source...
- NRC - National Research Council. Nutrient requirements of swine. 11th ed. Washington, DC, USA: National Academies Press; 2012. 420 p.
- Nyachoti CM, Zijlstra RT, de Lange CFM, Patience JF. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can J Anim Sci. 2004 Dec 1;84 (4):549-66.
Go to original source...
- Orr JDE. Determination of individual feed ingredient and total ration palatability. Adv Anim Physiol Anim Nutr. 1980;11(11):53-63.
- Quiniou N, Noblet J. Effect of the dietary net energy concentration on feed intake and performance of growingfinishing pigs housed individually. J Anim Sci. 2012 Dec 1; 90(12):4362-72.
Go to original source...
Go to PubMed...
- Ramonet Y, Meunier-Salaun MC, Dourmad JY. High-fiber diets in pregnant sows: Digestive utilization and effects on the behavior of the animals. J Anim Sci. 1999 Mar 1; 77(3):591-9.
Go to original source...
Go to PubMed...
- Rohe I, Ruhnke I, Knorr F, Mader A, Boroojeni FG, Lowe R, Zentek J. Effects of grinding method, particle size, and physical form of the diet on gastrointestinal morphology and jejunal glucose transport in laying hens. Poult Sci. 2014 Aug 1;93(8):2060-8.
Go to original source...
Go to PubMed...
- Rose SP, Kyriazakis I. Diet selection of pigs and poultry. Proc Nutr Soc. 1991 Mar;50(1):87-98.
Go to original source...
Go to PubMed...
- Sauvant D, Perez JM, Tran G. Tables of composition and nutritional value of feed materials: Pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen, Netherlands: Wageningen Academic Publishers; 2004. 304 p.
Go to original source...
- Schedle K. Sustainable pig and poultry nutrition by improvement of nutrient utilisation - A review. J Land Manag Food Environ. 2016 Mar 1;67(1):45-60.
Go to original source...
- Schedle K, Plitzner C, Ettle T, Zhao L, Domig KJ, Windisch W. Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch Anim Nutr. 2008 Apr 1;62(2): 141-51.
Go to original source...
Go to PubMed...
- Slama J, Schedle K, Wurzer GK, Gierus M. Physicochemical properties to support fibre characterization in monogastric animal nutrition. J Sci Food Agric. 2019 Jun;99(8): 3895-902.
Go to original source...
Go to PubMed...
- Stolba A, Wood-Gush DGM. The behaviour of pigs in a semi-natural environment. Anim Prod. 1989 Apr;48(2): 419-25.
Go to original source...
- Tybirk P. A model of food intake regulation in the growing pig. BSAP Occasional Publication. 1989;13:105-9.
Go to original source...
- VDLUFA - Association of German Agricultural Analytic and Research Institutes. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik, Band III Die chemische Untersuchung von Futtermittel [Handbook of agricultural experimental and analytical methods, Volume III: The chemical analysis of feedstuffs]. 3 rd ed. Darmstadt, Germany: VDLUFA-Verlag; 2012. 2190 p. German.
- Wenk C. The role of dietary fibre in the digestive physiology of the pig. Anim Feed Sci Tech. 2001 Mar 15;90(1-2):21-33.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.