Czech J. Anim. Sci., 2020, 65(6):224-231 | DOI: 10.17221/80/2020-CJAS
Monitoring of genetic diversity in autochthonous Czech poultry breeds assessed by genealogical dataOriginal Paper
- 1 Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- 2 Institute of Animal Science, Prague-Uhříněves, Czech Republic
- 3 Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
Czech local poultry breeds face high risks of extinction. Because these populations are closed, they are more likely to lose genetic diversity. The aim of this analysis was to determine the loss of genetic diversity in three Czech autochthonous poultry breeds. Pedigree data from a total of 1 932 Czech Gold Speckled Hens, 325 Czech White Geese and 111 Czech Crested Geese registered in studbooks between 2000 and 2018 were evaluated. Data were analysed to determine the major factors that affect the genetic variability of these breeds. The average numbers of equivalent complete generations ranged from 2.53 to 4.82. The effective numbers of founders were from 29 to 59, representing from 43% to 62% of the total number of founders. The effective number of ancestors was estimated in the range of 21 to 41. The average inbreeding coefficient and relatedness coefficient (in parentheses) for the reference populations were 2.0% (6.5%), 1.9% (4.9%) and 2.1% (9.3%), respectively. The results showed that the effective population size derived from the rate of inbreeding ranged from 46 to 108 and if derived from the rate of coancestry it ranged from 35 to 74. With regard to these results, the analysed breeds showed a high probability of allele loss and consequent loss of genetic diversity.
Keywords: inbreeding; structure of population; chicken; goose
Published: June 30, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files:
Download file | 80-2020 Supplementary Material.pdf File size: 373.27 kB |
References
- Boichard D, Maignel L, Verrier E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet Sel Evol. 1997 Jan;29(1):5-23.
Go to original source...
- Caballero A, Toro MA. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res. 2000 Jun; 75(3):331-43.
Go to original source...
Go to PubMed...
- Cassell BG, Adamec V, Pearson RE. Effect of incomplete pedigrees on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J Dairy Sci. 2003 Sep;86(9): 2967-76.
Go to original source...
Go to PubMed...
- Cervantes I, Goyache F, Molina A, Valera M, Gutierrez JP. Estimation of effective population size from the rate of coancestry in pedigreed populations. J Anim Breed Genet. 2011 Feb;128(1):56-63.
Go to original source...
Go to PubMed...
- Cortes O, Eusebi P, Dunner S, Sevane N, Canon J. Comparison of diversity parameters from SNP, microsatellites and pedigree records in the Lidia cattle breed. Livest Sci. 2019 Jan;219:80-5.
Go to original source...
- Curik I, Ferencakovic M, Solkner J. Genomic dissection of inbreeding depression: A gate to new opportunities. Rev Bras Zootec. 2017 Sep;46(9):773-82.
Go to original source...
- Doekes HP, Curik I, Nagy I, Farkas J, Kover G, Windig JJ. Revised calculation of Kalinowski's ancestral and new inbreeding coefficients. Diversity. 2020 Apr;12(4):155.
Go to original source...
- Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow: Pearson, Prentice Hall; 2009. 464 p.
- FAO - Food and Agriculture Organization. Secondary guidelines for development of national farm animal genetic resources management plans: Animal recording for medium input production environment. Rome: FAO; 1998.
- Figueredo JS, Cruz JF, Sousa LS, Teixeira NMR, Carneiro PLS, Brito ND, Pinheiro RGS, Lacerda KSO, Mottin VD. Genetic diversity and population structure estimation of Brazilian Somali sheep from pedigree data. Small Rumin Res. 2019 Oct;179:64-9.
Go to original source...
- Gholizadeh M. Population structure of Mazandaran native fowls using pedigree analysis. Trop Anim Health Prod. 2017 Mar;49(3):561-7.
Go to original source...
Go to PubMed...
- Goleman M, Balicki I, Radko A, Jakubczak A, Fornal A. Genetic diversity of the Polish Hunting Dog population based on pedigree analyses and molecular studies. Livest Sci. 2019 Nov;229:114-7.
Go to original source...
- Graczyk M, Andres K, Kapkowska E, Szwaczkowski T. Pedigree analyses of the Zatorska goose population. Czech J Anim Sci. 2015 Nov;60(11):513-20.
Go to original source...
- Grilz-Seger G, Druml T, Neuditschko M, Dobretsberger M, Horna M, Brem G. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. BMC Genomics. 2019 Mar;20:174.
Go to original source...
Go to PubMed...
- Gutierrez JP, Cervantes I, Molina A, Valera M, Goyache F. Individual increase in inbreeding allows estimating effective sizes from pedigrees. Genet Sel Evol. 2008 Jun; 40:359-78.
Go to original source...
Go to PubMed...
- Hofmannova M, Pribyl J, Krupa E, Pesek P. Estimation of inbreeding effect on conception in Czech Holstein. Czech J Anim Sci. 2019 Jul;64(7):309-16.
Go to original source...
- Hodges J. Conservation of genes and culture: Historical and contemporary issues. Poult Sci. 2006 Feb;85(2):200-9.
Go to original source...
Go to PubMed...
- Kalinowski ST, Hedrick PW, Miller PS. Inbreeding depression in the Speke's gazelle captive breeding program. Conserv Biol. 2000 Oct;14(5):1375-84.
Go to original source...
- Krupa E, Zakova E, Krupova Z. Evaluation of inbreeding and genetic variability of five pig breeds in Czech Republic. Asian Australas J Anim Sci. 2015 Jan;28(1):25-36.
Go to original source...
Go to PubMed...
- Lacy RC. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989 Jan;8(2):111-23.
Go to original source...
- Lacy RC. Clarification of genetic terms and their use in the management of captive populations. Zoo Biol. 1995 Nov; 14(6):565-77.
Go to original source...
- Landi V, Lasagna E, Ceccobelli S, Martinez A, Santos-Silva F, Vega-Pla JL, Panella F, Allain D, Palhiere I, Murawski M, Dunner S, Da Gama LT, Barba C, Delgado JV, Sarti FM. An historical and biogeographical assessment of European Merino sheep breeds by microsatellite markers. Small Rumin Res. 2019 Aug;177:76-81.
Go to original source...
- Lutaaya E, Misztal I, Bertrand JK, Mabry JW. Inbreeding in populations with incomplete pedigrees. J Anim Breed Genet. 1999 Dec;116(6):475-80.
Go to original source...
- MacCluer JW, Boyce AJ, Dyke B, Weitkamp LR, Pfennig DW, Parsons CJ. Inbreeding and pedigree structure in standardbred horses. J Hered. 1983 Nov;74(6):394-9.
Go to original source...
- Malecot G. Les mathématiques de l'hérédité [The mathematics of heredity]. Paris: Barnéoud frères; 1948. 63 p. French.
- Marquez GC, Siegel PB, Lewis RM. Genetic diversity and population structure in lines of chickens divergently selected for high and low 8-week body weight. Poult Sci. 2010 Dec;89(12):2580-8.
Go to original source...
Go to PubMed...
- Moravcikova N, Kasarda R, Vosty L, Krupova Z, Krupa E, Lehocká K, Olsanska B, Trakovicka A, Nadasky R, Zidek R, Belej L, Golian J. Analysis of selection signatures in the beef cattle genome. Czech J Anim Sci. 2019 Dec;64(12): 491-503.
Go to original source...
- Nandolo W, Meszaros G, Banda LJ, Gondwe TN, Lamuno D, Mulindwa HA, Nakimbugwe HN, Wurzinger M, Utsunomiya YT, Woodward-Greene MJ, Liu M, Liu G, Van Tassell CP, Curik I, Rosen BD, Solkner J. Timing and Extent of Inbreeding in African Goats. Front Genet. 2019 Jun;10:537.
Go to original source...
Go to PubMed...
- Nei M. Molecular evolutionary genetic. New York: Columbia University Press; 1987. 512 p.
Go to original source...
- Pham MH, Tran XH, Berthouly-Salazar C, Tixier-Boichard M, Chen CF, Lee YP. Monitoring of genetic diversity in Taiwan conserved chickens assessed by pedigree and molecular data. Livest Sci Feb. 2016;184:85-91.
Go to original source...
- Vostra-Vydrova H, Vostry L, Hofmanova B, Krupa E, Vesela Z, Schmidova J. Genetic diversity within and gene flow between three draught horse breeds using genealogical information. Czech J Anim Sci. 2016a Oct;61(10):462-72.
Go to original source...
- Vostra-Vydrova H, Vostry L, Hofmanova B, Krupa E, Zavadilova L. Pedigree analysis of the endangered Old Kladruber horse population. Lives Sci. 2016b Mar;185:17-23.
Go to original source...
- Vostra-Vydrova H, Vostry L, Hofmanova B, Moravcikova N, Vesela Z, Vrtkova I, Novotna A, Kasarda R. Genetic diversity and admixture in three native draught horse breeds assessed using microsatellite markers. Czech J Anim Sci. 2018 Mar;63(3):85-93.
Go to original source...
- Vostry L, Milerski M, Schmidova J, Vostra-Vydrova H. Genetic diversity and effect of inbreeding on litter size of the Romanov sheep. Small Rumin Res. 2018 Nov;168:25-31.
Go to original source...
- Woelders H, Zuidberg CA, Hiemstra SJ. Animal genetic resources conservation in the Netherlands and Europe: Poultry perspective. Poult Sci. 2006 Feb;85(2):216-22.
Go to original source...
Go to PubMed...
- Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330-8.
Go to original source...
- Wright S. The genetical structure of populations. Ann Eugen. 1949;15:323-54.
Go to original source...
Go to PubMed...
- Zanetti E, De Marchi M, Dalvit C, Cassandro M. Genetic characterization of local Italian breeds of chickens undergoing in situ conservation. Poult Sci. 2010 Mar;89 (3):420-7.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.