Czech J. Anim. Sci., 2020, 65(6):193-204 | DOI: 10.17221/23/2020-CJAS

Comparison of two muscle fibre staining techniques and their relation to pork quality traitsOriginal Paper

Nicole Lebedová ORCID...*,1, Tersia Needham2, Jaroslav Čítek1, Monika Okrouhlá1, Kateřina Zadinová1, Kamila Pokorná1, Roman Stupka1
1 Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
2 Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic

This study compared two histochemical staining methods of muscle fibres and evaluated their relationship with the meat quality traits of two high-value porcine muscles. Immunohistochemical (IHC) and adenosine triphosphatase (ATPase) staining was used to assess the cross-sectional area and proportion of fibre-types I, IIa, IIx and IIb in the samples of longissimus lumborum (LL) and psoas major (PM) muscles collected one-hour post-mortem from 25 crossbred pigs [Large WhiteSire × (Landrace × Large WhiteDam)] at an average age of 152 days. Muscles differed in all fibre parameters, except the proportion and relative area of type IIx fibres. The LL muscle exhibited greater fibre cross-sectional areas of all fibre types, higher proportions of type IIb/IIB, and lower proportions of I and IIa fibres than the PM muscle in both staining techniques. These two muscles also differed marginally in moisture, crude protein and intramuscular fat content. The PM muscle showed a low correlation between fibre types and chemical composition, but the LL muscle showed moderate correlations between fibre CSA and area composition for moisture and ash content. After IHC staining, an increase in LL eye muscle area and drip loss were correlated with lower proportions of type I fibres, while a greater proportion of type IIx fibres resulted in increased LL eye muscle area and moisture content. Furthermore, a higher CSA of all fibre types in the LL decreased redness (a*) and moisture content of the muscle. Results showed that IHC is more appropriate than ATPase staining for the assessment of relationships between muscle fibre parameters and meat quality traits in pigs.

Keywords: ATPase activity; histology; immunohistochemistry; muscle fibre type; myosin heavy chain isoform

Published: June 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Lebedová N, Needham T, Čítek J, Okrouhlá M, Zadinová K, Pokorná K, Stupka R. Comparison of two muscle fibre staining techniques and their relation to pork quality traits. Czech J. Anim. Sci. 2020;65(6):193-204. doi: 10.17221/23/2020-CJAS.
Download citation

References

  1. AOAC. Official methods of analysis. 18th ed. Gaithersburg, USA: Association of Official Analytical Chemists; 2005.
  2. Ashmore CR, Doerr L. Comparative aspects of muscle types in different species. Exp Neurol. 1971 Jun;31(3):408-18. Go to original source... Go to PubMed...
  3. Behan WM, Cossar DW, Madden HA, McKay IC. Validation of a simple, rapid, and economical technique for distinguishing type 1 and 2 fibres in fixed and frozen skeletal muscle. J Clin Pathol. 2002 May;55(5):375-80. Go to original source... Go to PubMed...
  4. Bogucka J, Ribeiro DM, Da Costa RPR, Bednarczyk M. Effect of synbiotic dietary supplementation on histological and histopathological parameters of pectoralis major muscle of broiler chickens. Czech J Anim Sci. 2018 Jul;63(7):263-71. Go to original source...
  5. Brooke MH, Kaiser KK. Muscle fibre types: How many and what kind? Arch Neurol. 1970 Oct;23:369-79. Go to original source... Go to PubMed...
  6. Candek-Potokar M, Lefaucheur L, Zlender B, Bonneau M. Effect of slaughter weight and/or age on histological characteristics of pig longissimus dorsi muscle as related to meat quality. Meat Sci. 1999 Jun;52(2):195-203. Go to original source... Go to PubMed...
  7. Chang KC, Da Costa N, Blackley R, Southwood O, Evans G, Plastow G, Wood JD, Richardson RI. Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci. 2003 May;64(1): 93-103. Go to original source... Go to PubMed...
  8. Chodova D, Tumova E, Volek Z, Skrivanova V, Vlckova J. The effect of one-week intensive feed restriction and age on the carcass composition and meat quality of growing rabbits. Czech J Anim Sci. 2016 Apr;61(4):151-8. Go to original source...
  9. Choe JH, Choi YM, Lee SH, Shin HG, Ryu YC, Hong KC, Kim BC. The relation between glycogen, lactate content and muscle fiber type composition, and their influence on postmortem glycolytic rate and pork quality. Meat Sci. 2008 Oct;80(2):355-62. Go to original source... Go to PubMed...
  10. Choi YM, Kim BC. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest Sci. 2009 Jun;122(2):105-18. Go to original source...
  11. Christensen M, Kok C, Ertbjerg P. Mechanical properties of type I and type IIB single porcine muscle fibres. Meat Sci. 2006 Jul;73(3):422-5. Go to original source... Go to PubMed...
  12. Essen-Gustavsson B, Lindholm A. Fibre types and metabolic characteristics in muscle of wild boars, normal and halothane sensitive Swedish Landrace pigs. Comp Biochem Physiol A Comp Physiol. 1984;78(1):67-71. Go to original source... Go to PubMed...
  13. Fazarinc G, Ursic M, Kantura VG, Vukicevic TT, Skrlep M, Candek-Potokar M. Expression of myosin heavy chain isoforms in longissimus muscle of domestic and wild pig. Slov Vet Res. 2013 Jan;50(2):67-74.
  14. Fernandez X, Lefaucheur L, Candek M. Comparative study of two classifications of muscle fibres: Consequences for the photometric determination of glycogen according to fibre type in red and white muscle of pig. Meat Sci. 1995 Jan;41(2):225-35. Go to original source... Go to PubMed...
  15. Gauthier GF. On the relationship of ultrastructural and cytochemical features to color in mammalian skeletal muscle. Zeits Zellfors. 1969 Jan;95(3):462-82. Go to original source... Go to PubMed...
  16. Guzek D, Glabska D, Glabski K, Pogorzelski G, Barszczewski J, Wierzbicka A. Relationships between sarcomere length and basic composition of infraspinatus and longissimus dorsi muscle. Turk J Vet Anim Sci. 2015 Jan;39(1):96-101. Go to original source...
  17. Honikel KO. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998 Aug;49(4):447-57. Go to original source... Go to PubMed...
  18. Hwang YH, Ismail I, Joo ST. The relationship between muscle fiber composition and pork taste-traits assessed by electronic tongue system. Korean J Food Sci Anim Resour. 2018 Dec;38(6):1305-14. Go to original source... Go to PubMed...
  19. Joo ST, Kim GD, Hwang YH, Ryu YC. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013 Dec;95(4):828-36. Go to original source... Go to PubMed...
  20. Kim GD, Ryu YC, Jeong JY, Yang HS, Joo ST. Relationship between pork quality and characteristics of muscle fibers classified by the distribution of myosin heavy chain isoforms. J Anim Sci. 2013 Nov;91(11):5525-34. Go to original source... Go to PubMed...
  21. Kim GD, Ryu YC, Jo C, Lee JG, Yang HS, Jeong JY, Joo ST. The characteristics of myosin heavy chain-based fiber types in porcine longissimus dorsi muscle. Meat Sci. 2014 Feb;96(2PA):712-8. Go to original source... Go to PubMed...
  22. Kim GD, Yang HS, Jeong JY. Comparison of myosin heavy chain content determined by label-free quantification between porcine longissimus thoracis, psoas major and semimembranosus muscles. Food Res Int. 2017 Oct; 100(1):504-13. Go to original source... Go to PubMed...
  23. Klont RE, Brocks L, Eikelenboom G. Muscle fibre type and meat quality. Meat Sci. 1998;49(Suppl. 1):219-29. Go to original source...
  24. Lee SH, Joo ST, Ryu YC. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010 Sep;86(1):166-70. Go to original source... Go to PubMed...
  25. Lee SH, Kim JM, Ryu YC, Kwang SK. Effects of morphological characteristics of muscle fibers on porcine growth performance and pork quality. Korean J Food Sci Anim Resour. 2016 Oct;36(5):583-93. Go to original source... Go to PubMed...
  26. Lefaucheur L, Vigneron P. Postnatal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat Sci. 1986;16(3):199-216. Go to original source... Go to PubMed...
  27. Lefaucheur L, Milan D, Ecolan P, Le Callennec C. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. J Anim Sci. 2004 Jul; 82(7):1931-41. Go to original source... Go to PubMed...
  28. Lefaucheur L. A second look into fibre typing - relation to meat quality. Meat Sci. 2010 Feb;84(2):257-70. Go to original source... Go to PubMed...
  29. Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci World J. 2016 Feb;2016:1-14. Go to original source... Go to PubMed...
  30. Losel D, Franke A, Kalbe C. Comparison of different skeletal muscles from growing domestic pigs and wild boars. Arch Anim Breed. 2013 Oct;56(1):766-77. Go to original source...
  31. Nemecek T, Tumova E, Chodova D. Effect of sex on growth, biochemical and haematological parameters of blood, carcass value and meat quality in nutrias (Myocastor coypus). Czech J Anim Sci. 2019 Apr;64(4):166-73. Go to original source...
  32. Oe M, Ohnishi-Kameyama M, Nakajima I, Muroya S, Chikuni K. Muscle type specific expression of tropomyosin isoforms in bovine skeletal muscles. Meat Sci. 2007 Apr; 75(4):558-63. Go to original source... Go to PubMed...
  33. Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol. 2016 Feb;310(3):H326-36. Go to original source... Go to PubMed...
  34. Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000 Sep;50(6):500-9. Go to original source...
  35. Realini CE, Venien A, Gou P, Gatellier P, Perez-Juan M, Danon J, Astruc T. Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 1. Microscopic analysis of muscles. Meat Sci. 2013 Jul;94(3):408-16. Go to original source... Go to PubMed...
  36. Ruusunen M, Puolanne E. Histochemical properties of fibre types in muscles of wild and domestic pigs and the effect of growth rate on muscle fibre properties. Meat Sci. 2004 Jul;67(3):533-9. Go to original source... Go to PubMed...
  37. Ryu YC, Choi YM, Lee SH, Shin HG, Choe JH, Kim JM, Hong KC, Kim BC. Comparing the histochemical characteristics and meat quality traits of different pig breeds. Meat Sci. 2008 Oct;80(2):363-9. Go to original source... Go to PubMed...
  38. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011 Oct;91(4):1447-531. Go to original source... Go to PubMed...
  39. Soglia F, Mudalal S, Babini E, Di Nunzio M, Mazzoni M, Sirri F, Cavani C, Petracci M. Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality. Poult Sci. 2015 Mar;95 (3):651-9. Go to original source... Go to PubMed...
  40. Song S, Ahn CH, Kim GD. Muscle fiber typing in bovine and porcine skeletal muscles using immunofluorescence with monoclonal antibodies specific to myosin heavy chain isoforms. Korean J Food Sci Anim Resour. 2020 Jan;40(1):132-44. Go to original source... Go to PubMed...
  41. Su L, Li H, Xin X, Duan Y, Hua XQ, Jin Y. Muscle fiber types, characteristics and meat quality. Adv Mater Res. 2013 Jan;634-638:1263-7. Go to original source...
  42. Velotto S, Vitale C, Crasto A. Muscle fibre types, fat deposition and fatty acid profile of Casertana versus Large White pig. Anim Sci Pap Rep. 2012;30(1):35-44.
  43. Weiss A, Schiaffino S, Leinwand LA. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: Implications for functional diversity. J Mol Biol. 1999 Jul;290(1):61-75. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.