Czech J. Anim. Sci., 2018, 63(5):167-173 | DOI: 10.17221/8/2017-CJAS

Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in German Holstein siresOriginal Paper

Jindřich Čítek*,1, Lenka Hanusová1, Michaela Brzáková1, Libor Večerek1, Lothar Panicke2, Lucie Lískovcová1
1 Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
2 Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany

The association between several gene polymorphisms, the estimated breeding values for milk performance traits, and glucose metabolism measured by the glucose tolerance test (GTT) in German Holstein sires were evaluated. Polymorphisms in DGAT1, GH1, GHR, FASN, and OLR1 genes were not associated with the GTT. A significant relationship was obtained for the DGAT1 AA/GC polymorphism and estimated breeding values for milk performance (milk yield, fat and protein yield, fat and protein percentage). The polymorphism in GHR was significantly associated with estimated breeding values for fat yield, and the polymorphism in OLR1 with estimated breeding value for protein yield. It shows the importance of the polymorphisms and makes their use in the breeding possible. GTT may be helpful in metabolic analyses, but the gene polymorphisms assessed in our study were not associated with GTT traits and further studies should examine other gene polymorphisms to support the role of GTT for potential breeding purposes.

Keywords: Bos taurus; milk; glucose metabolism; DGAT1; GH1; GHR; FASN; OLR1; ABCG2

Published: May 31, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Čítek J, Hanusová L, Brzáková M, Večerek L, Panicke L, Lískovcová L. Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in German Holstein sires. Czech J. Anim. Sci. 2018;63(5):167-173. doi: 10.17221/8/2017-CJAS.
Download citation

References

  1. Bauer J., Pribyl J., Vostry L. (2015): Contribution of domestic and Interbull records to reliabilities of single-step genomic breeding values in dairy cattle. Czech Journal of Animal Science, 60, 263-267. Go to original source...
  2. Blott S., Kim J.J., Moisio S., Schmidt-Kuntzel A., Cornet A., Berzi P., Cambisano N., Ford C., Grisart B., Johnson D., Karim L., Simon P., Snel R., Spelman R., Wong J., Vilkki J., Georges M., Farnir F., Coppieters W. (2003): Molecular dissection of a quantitative trait locus: A phenylalanineto-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics, 163, 253-266. Go to original source... Go to PubMed...
  3. Burkert O. (1998): Analyses of intravenous and modified glucose tolerance test in breeding bulls. Doctor Thesis. Berlin, Germany: Free University Berlin. (in German)
  4. Coppieters W., Riquet J., Arranz J.J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Nezer C., Simon P., Vanmanshoven P., Wagenaar D., Georges M. (1998): A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mammalian Genome, 9, 540-544. Go to original source... Go to PubMed...
  5. Di Stasio L., Destefanis G., Brugiapaglia A., Albera A., Rolando A. (2005): Polymorphism of the GHR gene in cattle and relationships with meat production and quality. Animal Genetics, 36, 138-140. Go to original source... Go to PubMed...
  6. Etherton T.D. (2004): Somatotropic function: the somatomedin hypothesis revisited. Journal of Animal Science, 82, E239-E244. Go to PubMed...
  7. Farke C., Meyer H.H., Bruckmaier R.M., Albrecht C. (2008): Differential expression of ABC transporters and their regulatory genes during lactation and dry period in bovine mammary tissue. Journal of Dairy Research, 75, 406-414. Go to original source... Go to PubMed...
  8. Fischer E., Staufenbiel R., Panicke L. (2003): Metabolic parameters of the glucose tolerance test (GTT) for the additional evaluation of young bulls. Archiv Tierzucht, 46 (Special issue 1), 84-88. (in German)
  9. Fontanesi L. (2016): Metabolomics and livestock genomics: insights into a phenotyping frontier and its applications in animal breeding. Animal Frontiers, 6, 73-79. https://doi.org/10.17221/8/2017-CJAS Go to original source...
  10. Goddard M.E., Kemper K.E., MacLeod I.M., Chamberlain A.J., Hayes B.J. (2016): Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proceedings of the Royal Society B - Biological Sciences, 283: 20160569. Go to original source... Go to PubMed...
  11. Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S., Simon P., Spelman R., Georges M., Snell R. (2002): Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12, 222-231. Go to original source... Go to PubMed...
  12. Groeneveld E. (2006): PEST User's Manual. Institute of Animal Science, Neustadt, Germany.
  13. Hanusova L., Mikova A., Vecerek L., Schroeffelova D., Rehout V., Tothova L., Vernerova K., Hosnedlova B., Citek J. (2014): Effect of DGAT1 polymorphisms on the estimated breeding values of Czech Simmental sires. Czech Journal of Animal Science, 59, 365-373. Go to original source...
  14. Khatib H., Leonard S.D., Schutzkus V., Luo W., Chang Y.M. (2006): Association of the OLR1 gene with milk composition in Holstein dairy cattle. Journal of Dairy Science, 89, 1753-1760. Go to original source... Go to PubMed...
  15. Komisarek J., Dorynek Z. (2009): Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 50, 125-132. Go to original source... Go to PubMed...
  16. Mitra A., Schlee P., Balakrishman C.R., Pirchner F. (1995): Polymorphisms at growth-hormone and prolactin loci in Indian cattle and buffalo. Journal of Animal Breeding and Genetics, 112, 71-74. Go to original source...
  17. Morris C.A., Cullen N.G., Glass B.C., Hyndman D.L., Manley T.R., Hickey S.M., McEwan J.C., Pitchford W.S., Bottema C.D.K., Lee M.A.H. (2007): Fatty acid synthase effects on bovine adipose fat and milk fat. Mammalian Genome, 18, 64-74. Go to original source... Go to PubMed...
  18. Panicke L., Staufenbiel R., Fischer E. (2001): Relationship between parameters of the glucose tolerance test (GTT) in young sires and their estimated breeding value (EBV). Czech Journal of Animal Science, 46, 145-151.
  19. Pasandideh M., Mohammadabadi M.R., Esmailizadeh A.K., Tarang A. (2015): Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech Journal of Animal Science, 60, 97-104. Go to original source...
  20. Pieper L., Staufenbiel R., Christ J., Panicke L., Muller U., Brockmann G.A. (2016): Heritability of metabolic response to the intravenous glucose tolerance test in German Holstein Friesian bulls. Journal of Dairy Science, 99, 7240-7246. Go to original source... Go to PubMed...
  21. Pribyl J., Bauer J., Cermak V., Pesek P., Pribylova J., Splichal J., Vostra-Vydrova H., Vostry L., Zavadilova L. (2015): Domestic estimated breeding values and genomic enhanced breeding values of bulls in comparison with their foreign genomic enhanced breeding values. Animal, 9, 1635-1642. Go to original source... Go to PubMed...
  22. Pryce J.E., Gaddis K.L.P., Koeck A., Bastin C., Abdelsayed M., Gengler N., Miglior F., Heringstad B., Egger-Danner C., Stock K.F., Bradley A.J., Cole J.B. (2016): Opportunities for genetic improvement of metabolic diseases. Journal of Dairy Science, 99, 6855-6873. Go to original source... Go to PubMed...
  23. Schennink A., Bovenhuis H., Leon-Kloosterziel K.M., van Arendonk J.A.M., Visker M.H.P.W. (2009): Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Animal Genetics, 40, 909-916. Go to original source... Go to PubMed...
  24. Shi T., Xu Y., Yang M.-J., Zhou Y., Liu M., Lan X.-Y., Lei C.Z., Qi X.-L., Lin F.-P., Bai Y.-Y., Chen H. (2016): Genetic variation, association analysis, and expression pattern of SMAD3 gene in Chinese cattle. Czech Journal of Animal Science, 61, 209-216. Go to original source...
  25. Suchocki T., Wojdak-Maksymiec K., Szyda J. (2016): Using gene networks to identify genes and pathways involved in milk production traits in Polish Holstein dairy cattle. Czech Journal of Animal Science, 61, 526-538. Go to original source...
  26. Suravajhala P., Kogelman L.J.A., Kadarmideen H.N. (2016): Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genetics Selection Evolution, 48: 38. Go to original source... Go to PubMed...
  27. Winter A., Kramer W., Werner F.A.O., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G., Fries R. (2002): Association of a lysine-232/alanine polymorphism in a bovine gene encoding acylCoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences of the United States of America, 99, 9300-9305. Go to original source... Go to PubMed...
  28. Zhang S., Knight T.J., Reecy J.M., Beitz D.C. (2008): DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Animal Genetics, 39, 62-70. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.