Czech J. Anim. Sci., 2018, 63(1):24-31 | DOI: 10.17221/53/2017-CJAS
Dietary energy level affects the composition of cecal microbiota of starter Pekin ducklingsOriginal Paper
- 1 Institute of Cellular and Molecular Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, P.R. China
- 2 College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
- 3 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
In this study, we evaluated the phylogenetic diversity of the cecal microbiota of 3-week-old ducklings fed three diets differing in metabolizable energy. The contents of the ceca were collected from ducklings of different groups. The ceca bacterial DNA was isolated and the V3 to V4 regions of 16S rRNA genes were amplified. The amplicons were subjected to high-throughput sequencing to analyze the bacterial diversity of different groups. The predominant bacterial phyla were Bacteroidetes (~65.67%), Firmicutes (~17.46%), and Proteobacteria (~10.73%). The abundance of Bacteroidetes increased and that of Firmicutes decreased with increasing dietary energy level. The diversity decreased (Simpson diversity index and Shannon diversity index) with the increase in dietary energy level, but the richness remained constant. Notably, Brachyspira bacteria were detected with a very high relative abundance (4.91%) in ceca of ducks fed a diet with 11.30 MJ/kg metabolizable energy, suggesting that low energy content may affect their colonization in cecum.
Keywords: duck; bacterial diversity; dietary energy
Published: January 31, 2018 Show citation
References
- Amato K.R., Leigh S.R., Kent A., Mackie R.I., Yeoman C.J., Stumpf R.M., Wilson B.A., Nelson K.E., White B.A., Garber P.A. (2015): The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microbial Ecology, 69, 434-443.
Go to original source...
Go to PubMed...
- Bedford M.R., Cowieson A.J. (2012): Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology, 173, 76-85.
Go to original source...
- Callaway T.R., Dowd S.E., Wolcott R.D., Sun Y., McReynolds J.L., Edrington T.S., Byrd J.A., Anderson R.C., Krueger N., Nisbet D.J. (2009): Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poultry Science, 88, 298-302.
Go to original source...
Go to PubMed...
- Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. (2010): QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336.
Go to original source...
Go to PubMed...
- Carmody R.N., Gerber G.K., Luevano J.M., Gatti D.M., Somes L., Svenson K.L., Turnbaugh P.J. (2015): Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe, 17, 72-84.
Go to original source...
Go to PubMed...
- Cole J.R., Chai B., Marsh T.L., Farris R.J., Wang Q., Kulam S.A., Chandra S., McGarrell D.M., Schmidt T.M., Garrity G.M., Tiedje J.M. (2003): The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31, 442-443.
Go to original source...
Go to PubMed...
- Daniel H., Moghaddas G.A., Berry D., Desmarchelier C., Hahne H., Loh G., Mondot S., Lepage P., Rothballer M., Walker A., Bohm C., Wenning M., Wagner M., Blaut M., Schmitt-Kopplin P., Kuster B., Haller D., Clavel T. (2014): High-fat diet alters gut microbiota physiology in mice. The ISME Journal, 8, 295-308.
Go to original source...
Go to PubMed...
- Danzeisen J.L., Kim H.B., Isaacson R.E., Tu Z.J., Johnson T.J. (2011): Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE, 6, e27949.
Go to original source...
Go to PubMed...
- Dore J., Blottiere H. (2015): The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 32, 195-199.
Go to original source...
Go to PubMed...
- Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M., Gordon J.I. (2013): The long-term stability of the human gut microbiota. Science, 341, Article No. 1237439.
Go to original source...
- Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. (2012): Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3, 289-306.
Go to original source...
Go to PubMed...
- Glavits R., Ivanics E., Thuma A., Kaszanyitzky E., Samu P., Ursu K., Dencso L., Dan A. (2011): Typhlocolitis associated with Spirochaetes in duck flocks. Avian Pathology, 40, 23-31.
Go to original source...
Go to PubMed...
- Gong J., Yu H., Liu T., Gill J.J., Chambers J.R., Wheatcroft R., Sabour P.M. (2008): Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. Journal of Applied Microbiology, 104, 372-382.
Go to original source...
Go to PubMed...
- Kohl K.D. (2012): Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182, 591-602.
Go to original source...
Go to PubMed...
- Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R., Gordon J.I. (2008): Evolution of mammals and their gut microbes. Science, 320, 1647-1651.
Go to original source...
Go to PubMed...
- Lu J., Santo J.W., Hill S., Edge T.A. (2009): Microbial diversity and host-specific sequences of Canada goose feces. Applied and Environmental Microbiology, 75, 5919-5926.
Go to original source...
Go to PubMed...
- Mappley L.J., Ragione R.M., Woodward M.J. (2014): Brachyspira and its role in avian intestinal spirochaetosis. Veterinary Microbiology, 168, 245-260.
Go to original source...
Go to PubMed...
- Matsui H., Kato Y., Chikaraishi T., Moritani M., Ban-Tokuda T., Wakita M. (2010): Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 16, 83-93.
Go to original source...
Go to PubMed...
- McWhorter T.J., Caviedes-Vidal E., Karasov W.H. (2009): The integration of digestion and osmoregulation in the avian gut. Biological Reviews, 84, 533-565.
Go to original source...
Go to PubMed...
- Mirpuri J., Raetz M., Sturge C.R., Wilhelm C.L., Benson A., Savani R.C., Hooper L.V., Yarovinsky F. (2014): Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes, 5, 28-39.
Go to original source...
Go to PubMed...
- Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. (2012): Host-gut microbiota metabolic interactions. Science, 336, 1262-1267.
Go to original source...
Go to PubMed...
- Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., Sahl J.W., Stres B., Thallinger G.G., Van Horn D.J., Weber C.F. (2009): Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appllied Environmental Microbiology, 75, 7537-7541.
Go to original source...
Go to PubMed...
- Scupham A.J., Patton T.G., Bent E., Bayles D.O. (2008): Comparison of the cecal microbiota of domestic and wild turkeys. Microbial Ecology, 56, 322-331.
Go to original source...
Go to PubMed...
- Semova I., Carten J.D., Stombaugh J., Mackey L.C., Knight R., Farber S.A., Rawls J.F. (2012): Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe, 12, 277-288.
Go to original source...
Go to PubMed...
- Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. (2014): Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS ONE, 9, e91941.
Go to original source...
Go to PubMed...
- Singh P., Karimi A., Devendra K., Waldroup P.W., Cho K.K., Kwon Y.M. (2013): Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poultry Science, 92, 272-276.
Go to original source...
Go to PubMed...
- Stanley D., Denman S.E., Hughes R.J., Geier M.S., Crowley T.M., Chen H., Haring V.R., Moore R.J. (2012): Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied Microbiology and Biotechnology, 96, 1361-1369.
Go to original source...
Go to PubMed...
- Swayne D.E., McLaren A.J. (1997): Avian intestinal Spirochaetes and avian intestinal spirochaetosis. In: Hampson D.J. and Stanton T.B. (eds): Intestinal Spirochaetes in Domestic Animals and Humans. CAB International, Wallingford, UK, 267-300.
- Vasai F., Ricaud K.B., Bernadet M.D., Cauquil L., Bouchez O., Combes S., Davail S. (2014): Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiology Ecology, 87, 204-216.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.