Czech J. Anim. Sci., 2017, 62(5):201-210 | DOI: 10.17221/86/2016-CJAS

Effects of selenium supplement forms on the diet-cow-calf transfer of selenium in Simmental cattleOriginal Paper

Barbara Niwińska*, Marcin Andrzejewski
Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland

The aim of this study was to determine the efficiency of diet-cow-calf transfer of selenium (Se) depending on the forms of Se-supplement given to cows of Simmental breed during the last trimester of pregnancy and the first week of lactation. On day 195 of pregnancy the cows were randomly assigned to one of four experimental groups (n = 6), and the newborn calves belonged to the same group as their mothers (n = 6). The cows in the control group received diet without Se-supplement, while the supplemented groups received Se in equivalent doses in a powder form (Se-unprotected) or in a protected form (Se-protected) of sodium selenite or in organic compounds (Se-yeast), the calves received colostrum and milk from their mothers. The data about feed and Se intake, colostrum and milk daily production, Se concentration in colostrum, milk, and cows and calves blood serum were recorded. The diet-cow Se transfer efficiency was estimated as the following ratios: the concentration of Se in cows' serum after parturition/daily Se intake during prepartum; Se secretion in colostrum/daily Se intake during prepartum; and Se secretion in milk at 7 days of lactation/daily Se intake. The ratios were higher (P ≤ 0.02) in the Se-yeast group than in the other supplemented groups, in the Se-unprotected and Se-protected groups the ratios were similar (P > 0.05). The cow-calf Se transfer efficiency estimated as calves' serum concentration after birth/cows' serum concentration after parturition was similar (P > 0.05) in all experimental groups. The results showed that the form of Se supplement modulated the Se transfer from the diet to cows; Se was transferred more efficiently from the Se-yeast than from sodium selenite. The form of Se supplement did not affect the cow-calf Se transfer efficiency.

Keywords: Se-supplement; cows; newborn calves; selenium transfer efficiency

Published: May 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Niwińska B, Andrzejewski M. Effects of selenium supplement forms on the diet-cow-calf transfer of selenium in Simmental cattle. Czech J. Anim. Sci. 2017;62(5):201-210. doi: 10.17221/86/2016-CJAS.
Download citation

References

  1. AOAC (1997): Official Method 996.17. Selenium in feeds and premixes. Continuous hydride generation atomic absorption (HGAA) method. Association of Official Analytical Chemists International, Gaithersburg, USA.
  2. Abdelrahman M.M., Kincaid L.R. (1995): Effect of selenium supplementation of cows on maternal transfer of selenium to fetal and newborn calves. Journal of Dairy Science, 78, 625-630. Go to original source... Go to PubMed...
  3. Bates J.M., Spate V.L., Morris J.S., St. Germain D.L., Galton V.A. (2000): Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development. Endocrinology, 141, 2490-2500. Go to original source... Go to PubMed...
  4. Bayril T., Yildiz A.S., Akdemir F., Yalcin C., Kose M., Yilmaz O. (2015): The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australasian Journal of Animal Sciences, 28, 1133-1139. Go to original source... Go to PubMed...
  5. Beckett G.J., Arthur J.R. (2005): Selenium and endocrine systems. Journal of Endocrinology, 184, 455-465. Go to original source... Go to PubMed...
  6. Brzoska F., Brzezinski W., Brzoska B. (2003): Mineral nutrients in Polish feedstuffs. Part 1: Fodder plants. Annals of Animal Science, 3, 115-126.
  7. Enjalbert F., Lebreton P., Salat O., Schelcher F. (1999): Effects of pre- or postpartum selenium supplementation on selenium status in beef cows and their calves. Journal of Animal Science, 77, 223-229. Go to original source... Go to PubMed...
  8. Galbraith M.L., Vorachek W.R., Estill C.T., Whanger P.D., Bobe G., Davis T.Z., Hall J.A. (2016): Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biological Trace Element Research, 171, 338-343. Go to original source... Go to PubMed...
  9. Gooneratne S.R., Christensen D.A. (1989): A survey of maternal and fetal tissue zinc, iron, manganese and selenium concentrations in bovine. Canadian Journal of Animal Science, 69, 151-159. Go to original source...
  10. Hall J.A., Van Saun R.J., Bobe G., Stewart W.C., Vorachek W.R., Mosher W.D., Nichols T., Forsberg N.E., Pirelli G.J. (2012): Organic and inorganic selenium: I. Oral bioavailability in ewes. Journal of Animal Science, 90, 568-576. Go to original source... Go to PubMed...
  11. Hall J.A., Bobe G., Vorachek W.R., Kasper K., Traber M.G., Mosher W.D., Pirelli G.J., Gamroth M. (2014): Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in seleniumreplete dairy cows. Biological Trace Element Research, 161, 272-287. Go to original source... Go to PubMed...
  12. Hefnawy A.E., Youssef S., Aguilera P.V., Rodriguez C.V., Tortora Perez J.L. (2014): The relationship between selenium and T3 in selenium supplemented and nonsupplemented ewes and their lambs. Veterinary Medicine International, 2014, Article ID 105236. Go to original source...
  13. Herdt T.H., Rumbeiha W., Braselton W.E. (2000): The use of blood analyses to evaluate mineral status in livestock. Toxicology, 16, 423-444. Go to original source... Go to PubMed...
  14. Hudman J.F., Glenn A.R. (1984): Selenite uptake and incorporation by Selenomonas ruminantium. Archives of Microbiology, 140, 252-256. Go to original source... Go to PubMed...
  15. Jarrige R. (ed.) (1989): Ruminant Nutrition: Recommended Allowances and Feed Tables. INRA, Paris, France/John Libbey, London, UK.
  16. Lemley C.O., Meyer A.M., Neville T.L., Hallford D.M., Camacho L.E., Maddock-Carlin K.R., Wilmoth T.A., Wilson M.E., Reynolds L.P., Caton J.S., Vonnahme K.A. (2014): Dietary selenium and nutritional plane alters maternal endocrine profiles during pregnancy and lactation. Domestic Animal Endocrinology, 46, 1-11. Go to original source... Go to PubMed...
  17. Mehdi Y., Dufrasne I. (2016): Selenium in cattle: a review. Molecules, 21, 545. Go to original source... Go to PubMed...
  18. Muth O.H., Oldfield J.E., Remmert L.F., Schubert J.R. (1958): Effects of selenium and vitamin E on white muscle disease. Science, 128, 1090-1091. Go to original source... Go to PubMed...
  19. NRC (2001): Nutrient Requirement of Dairy Cattle. 7th Ed. The National Academies Press, Washington, USA.
  20. Panev A., Hauptmanova K., Pavlata L., Pechova A., Filipek J., Dvorak R. (2013): Effect of supplementation of various selenium forms and doses on selected parameters of ruminal fluid and blood in sheep. Czech Journal of Animal Science, 58, 37-46. Go to original source...
  21. Patterson J.D., Burris W.R., Boling J.A., Matthews J.C. (2013): Individual intake of free-choice mineral mix by grazing beef cows may be less than typical formulation assumptions and form of selenium in mineral mix affects blood Se concentrations of cows and their suckling calves. Biological Trace Element Research, 155, 38-48. Go to original source... Go to PubMed...
  22. Pavlata L., Slosarkova S., Fleischer P., Pechova A. (2005): Effects of increased diodine supply on the selenium status of kids. Veterinary Medicine-Czech, 50, 186-194. Go to original source...
  23. Pechova A., Sevcikova L., Pavlata L., Dvorak R. (2012): The effect of various forms of selenium supplied to pregnant goats on selected blood parameters and on the concentration of Se in urine and blood of kids at the time of weaning. Veterinarni Medicina, 57, 394-403. Go to original source...
  24. Pilarczyk B., Balicka-Ramisz A., Ramisz A., Osipocic S.V., Tomza A., Wieczorek M. (2005): The investigation of serum selenium levels in farm animals from Western Pomerania and Western Ukraine. Folia Universitatis Agriculturae Stetinensis Zootechnica, 243, 137-142.
  25. Reeves M.A., Hoffmann P.R. (2009): The human selenoproteome: recent insights into functions and regulation. Cellular and Molecular Life Sciences, 66, 2457-2478. Go to original source... Go to PubMed...
  26. Rowntree J.E., Hill G.M., Hawkins D.R., Link J.E., Rincker M.J., Bednar G.W., Kreft Jr. R.A. (2004): Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. Journal of Animal Science, 82, 2995-3005. Go to original source... Go to PubMed...
  27. Salman S., Dinse D., Khol-Parisini A., Schafft H., LahrssenWiederholt M., Schreiner M., Scharek-Tedin L., Zentek J. (2013): Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Archives of Animal Nutrition, 67, 48-61. Go to original source... Go to PubMed...
  28. Serra A.B., Nakamura K., Matsui T., Harumoto H., Fujihara T. (1994): Inorganic selenium for sheep I. Selenium balance and selenium levels in the different ruminal fluid fractions. Asian Journal of Animal Science, 7, 83-89. Go to original source...
  29. Stewart W.C., Bobe G., Vorachek W.R., Pirelli G.J., Mosher W.D., Nichols T., Van Saun R.J., Forsberg N.E., Hall J.A. (2012): Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. Journal of Animal Science, 90, 577-584. Go to original source... Go to PubMed...
  30. Stowe H.D., Herdt T.H. (1992): Clinical assessment of selenium status of livestock. Journal of Animal Science, 70, 3928-3933. Go to original source... Go to PubMed...
  31. Suttle N.F. (2010): Mineral Nutrition of Livestock. CABI, Wallingford, UK. Go to original source...
  32. Weiss W.P., Hogan J.S. (2005): Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows. Journal of Dairy Science, 88, 4366-4374. Go to original source... Go to PubMed...
  33. Wlodarczyk R., Birkle B. (2010): Rumen protected selenium - the most effective form of selenium supply in ruminants nutrition. Zycie Weterynaryjne, 85, 238-242. (in Polish)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.