Czech J. Anim. Sci., 2017, 62(2):43-50 | DOI: 10.17221/29/2016-CJAS

Repeats as global DNA methylation marker in bovine preimplantation embryosOriginal Paper

Wenwen Li1, Ann Van Soom2, Luc Peelman*,1
1 Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
2 Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium

DNA methylation undergoes dynamic changes and is a crucial part of the epigenetic regulation during mammalian early development. To determine the DNA methylation levels in bovine embryos, we applied a bisulfite sequencing based method aimed at repetitive sequences including three retrotransposons (L1_BT, BovB, and ERV1-1-I_BT) and Satellite I. A more accurate estimate of the global DNA methylation level compared to previous methods using only one repeat sequence, like Alu, could be made by calculation of the weighted arithmetic mean of multiple repetitive sequences, considering the copy number of each repetitive sequence. Satellite I and L1_BT showed significant methylation reduction at the blastocyst stage, while BovB and ERV1-1-I_BT showed no difference. The mean methylation level of the repetitive sequences during preimplantation development was the lowest at the blastocyst stage. No methylation difference was found between embryos cultured in 5% and 20% O2. Because mutations of CpGs negatively influence the calculation accuracy, we checked the mutation rate of the sequenced CpG sites. Satellite I and L1_BT showed a relatively low mutation rate (1.92 and 3.72% respectively) while that of ERV1-1-I_BT and BovB was higher (11.95 and 24% respectively). Therefore we suggest using a combination of repeats with low mutation rate, taking into account the proportion of each sequence, as a relatively quick marker for the global DNA methylation status of preimplantation stages and possibly also for other cell types.

Keywords: epigenetics; retrotransposon; bisulfite sequencing

Published: February 28, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Li W, Van Soom A, Peelman L. Repeats as global DNA methylation marker in bovine preimplantation embryos. Czech J. Anim. Sci. 2017;62(2):43-50. doi: 10.17221/29/2016-CJAS.
Download citation

Supplementary files:

Download file29-2016 Li SOM.pdf

File size: 1.75 MB

References

  1. Adelson D.L., Raison J.M., Edgar R.C. (2009): Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proceedings of the National Academy of Sciences of the United States of America, 106, 12855-12860. Go to original source... Go to PubMed...
  2. Aranyi T., Varadi A., Simon I., Tusnady G.E. (2006): The BiSearch web server. BMC Bioinformatics, 7, 431-437. Go to original source... Go to PubMed...
  3. Aston K.I., Uren P.J., Jenkins T.G., Horsager A., Cairns B.R., Smith A.D., Carrell D.T. (2015): Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility, 104, 1388-1397. Go to original source... Go to PubMed...
  4. Bourc'His D., Le Bourhis D., Patin D., Niveleau A., Comizzoli P., Renard J.P., Viegas-Pequignot E. (2001): Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Current Biology, 11, 1542-1546. Go to original source... Go to PubMed...
  5. Couldrey C., Wells D.N. (2013): DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer. PLoS ONE, 8, e55153. Go to original source... Go to PubMed...
  6. Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E., Reik W. (2001): Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 98, 13734-13738. Go to original source... Go to PubMed...
  7. Dobbs K.B., Rodriguez M., Sudano M.J., Ortega M.S., Hansen P.J. (2013): Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS ONE, 8, e66230. Go to original source... Go to PubMed...
  8. Farin P.W., Piedrahita J.A., Farin C.E. (2006): Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology, 65, 178-191. Go to original source... Go to PubMed...
  9. Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W., Molloy P.L., Paul C.L. (1992): A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 89, 1827-1831. Go to original source... Go to PubMed...
  10. Fulka H., Mrazek M., Tepla O., Fulka J. (2004): DNA methylation pattern in human zygotes and developing embryos. Reproduction, 128, 703-708. Go to original source... Go to PubMed...
  11. Guo H., Zhu P., Yan L., Li R., Hu B., Lian Y., Yan J., Ren X., Lin S., Li J. (2014): The DNA methylation landscape of human early embryos. Nature, 511, 606-610. Go to original source... Go to PubMed...
  12. Hemberger M. (2007): Epigenetic landscape required for placental development. Cellular and Molecular Life Sciences, 64, 2422-2436. Go to original source... Go to PubMed...
  13. Hou J., Liu L., Lei T., Cui X., An X., Chen Y. (2007): Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. Science in China Series C: Life Sciences, 50, 56-61. Go to original source... Go to PubMed...
  14. Hsiung D.T., Marsit C.J., Houseman E.A., Eddy K., Furniss C.S., McClean M.D., Kelsey K.T. (2007): Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiology Biomarkers and Prevention, 16, 108-114. Go to original source... Go to PubMed...
  15. Jurka J., Kapitonov V.V., Pavlicek A., Klonowski P., Kohany O., Walichiewicz J. (2005): Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110, 462-467. Go to original source... Go to PubMed...
  16. Klose R.J., Bird A.P. (2006): Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences, 31, 89-97. Go to original source... Go to PubMed...
  17. Kumaki Y., Oda M., Okano M. (2008): QUMA: quantification tool for methylation analysis. Nucleic Acids Research, 36, 170-175. Go to original source... Go to PubMed...
  18. Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. et al. (2001): Initial sequencing and analysis of the human genome. Nature, 409, 860-921. Go to original source...
  19. Li Y., O'Neill C. (2012): Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE, 7, e30687. Go to original source... Go to PubMed...
  20. Li W., Goossens K., Van Poucke M., Forier K., Braeckmans K., Van Soom A., Peelman L.J. (2014): High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28, 948-959. Go to original source...
  21. Lisanti S., Omar W.A., Tomaszewski B., De Prins S., Jacobs G., Koppen G., Mathers J.C., Langie S.A. (2013): Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS ONE, 8, e79044. Go to original source... Go to PubMed...
  22. Messerschmidt D.M., Knowles B.B., Solter D. (2014): DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes and Development, 28, 812-828. Go to original source... Go to PubMed...
  23. Newman M., Blyth B.J., Hussey D.J., Jardine D., Sykes P.J., Ormsby R.J. (2012): Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics, 7, 92-105. Go to original source... Go to PubMed...
  24. Salilew-Wondim D., Fournier E., Hoelker M., Saeed-Zidane M., Tholen E., Looft C., Neuhoff C., Besenfelder U., Havlicek V., Rings F., Gagne D., Sirard M.A., Robert C., Saadi H.A.S., Gad A., Schellander K., Tesfaye D. (2015): Genome-wide DNA methylation patterns of bovine blastocysts developed in vivo from embryos completed different stages of development in vitro. PLoS ONE, 10, e0140467. Go to original source... Go to PubMed...
  25. Sawai K., Takahashi M., Fujii T., Moriyasu S., Hirayama H., Minamihashi A., Hashizume T., Onoe S. (2011): DNA methylation status of bovine blastocyst embryos obtained from various procedures. Journal of Reproduction and Development, 57, 236-241. Go to original source... Go to PubMed...
  26. Schostak N., Pyatkov K., Zelentsova E., Arkhipova I., Shagin D., Shagina I., Mudrik E., Blintsov A., Clark I., Finnegan D.J. (2008): Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Research, 36, 2522-2529. Go to original source... Go to PubMed...
  27. Schulz W., Steinhoff C., Florl A. (2006): Methylation of endogenous human retroelements in health and disease. In: Doerfler W., Bohm P. (eds): DNA Methylation: Development, Genetic Disease and Cancer. Springer, Berlin Heidelberg, Germany, 211-250. Go to original source...
  28. Smith Z.D., Chan M.M., Mikkelsen T.S., Gu H., Gnirke A., Regev A., Meissner A. (2012): A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 484, 339-344. Go to original source... Go to PubMed...
  29. Wroclawska E., Brant J.O., Yang T.P., Moore K. (2010): Improving efficiencies of locus-specific DNA methylation assessment for bovine in vitro produced embryos. Systems Biology in Reproductive Medicine, 56, 96-105. Go to original source... Go to PubMed...
  30. Yang A.S., Estecio M.R., Doshi K., Kondo Y., Tajara E.H., Issa J.P.J. (2004): A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Research, 32: e38. Go to original source... Go to PubMed...
  31. Young L.E., Fernandes K., McEvoy T.G., Butterwith S.C., Gutierrez C.G., Carolan C., Broadbent P.J., Robinson J.J., Wilmut I., Sinclair K.D. (2001): Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics, 27, 153-154. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.