Czech J. Anim. Sci., 2015, 60(11):513-520 | DOI: 10.17221/8560-CJAS
Pedigree analyses of the Zatorska goose populationOriginal Paper
- 1 Departament of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
- 2 Department of Swine and Small Animal Breeding, Institute of Animal Science, University of Agriculture in Cracow, Cracow, Poland
The structure of the Zatorska breed was estimated in the context of the realized conservation program. The level of genetic diversity and effective population size were estimated as well. The following parameters were evaluated: pedigree completeness index, genetic diversity, inbreeding level, individual increase in inbreeding, generation interval, and parameters connected with general condition of the population. The whole population of the Zatorska breed was housed in an experimental farm of the University of Agriculture in Cracow (Poland). Records were extracted from the studbook. Totally 5514 individuals hatched between 1990-2013 (2835 males and 2679 females) were included in the analysis. The average number of discrete generation equivalents reached 3.76, whereas the maximum discrete generation equivalent was 9.98. The average inbreeding level was low amounting to 1.46% for the whole population and 3.02% for the inbred individuals. The average pedigree completeness index for five generations reached 59.12%, for 10 generations 37.39%, and for all 16 generations it was 23.53%. The average effective population size was estimated from the family size variance and amounted to 67.36 individuals. It can be concluded that the conservation breeding program in the Zatorska goose has been going on well. This is confirmed by the magnitude of obtained estimates of parameters such as a low inbreeding level across generations under satisfactory pedigree completeness. On the other hand, the structure of a small population may be liable to fluctuations. Hence, continuous monitoring of the endangered population (including molecular control) seems to be necessary.
Keywords: waterfowl; genetic diversity; local breed; inbreeding level
Published: November 30, 2015 Show citation
References
- Boichard D., Maignel L., Verrier E. (1997): The value of using probabilities of gene origin to measure genetic variability in a population. Genetics Selection Evolution, 29, 5-23.
Go to original source...
- Borowska A., Szwaczkowski T. (2015): Pedigree analysis of Polish warm blood horses participating in riding performance tests. Canadian Journal of Animal Science, 95, 21-29.
Go to original source...
- Caballero A., Toro M.A. (2000): Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetic Research, 75, 331-343.
Go to original source...
Go to PubMed...
- Fair M.D., van Wyk J.B., Cloete S.W.P. (2012): Pedigree analysis of an ostrich breeding flock. South African Journal of Animal Science, 42, 114-122.
- Hodges J. (ed.) (1987): Animal Genetic Resources: Strategies for Improved Use of Conservation. FAO, Rome, Italy.
- Gutierrez J.P., Goyache F. (2005): A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics, 122, 172-176.
Go to original source...
Go to PubMed...
- Gutierrez J.P., Goyache F., Cervantes I. (2010): Endog v4.8 - A Computer Program for Monitoring Genetic Variability of Populations Using Pedigree Information. User's Quide. Universidad Complutense de Madrid, Madrid, Spain.
- Hill W.G. (1979): A note on effective population size with overlapping generations. Genetics, 92, 317-322.
Go to original source...
Go to PubMed...
- Honda T., Fujii T., Nomura T., Mukai F. (2006): Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. Journal of Animal Breeding and Genetics, 126, 172-179.
Go to original source...
Go to PubMed...
- Korrida A., Gutierrez J.P., Aggrey S.E., Amin-Alami A. (2013): Genetic variability characterization of the Moroccan Houbara Bustard (Chlamydotis undulata undulata) inferred from pedigree analysis. Zoo Biology, 32, 366-373.
Go to original source...
Go to PubMed...
- Lacy R.C. (1989): Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology, 8, 111-123.
Go to original source...
- Lacy R.C. (1995): Clarification of genetic terms and their use in the management of captive populations. Zoo Biology, 14, 565-578.
Go to original source...
- Lariviere J.M., Detilleux J., Leroy P. (2011): Estimates of inbreeding rates in forty traditional Belgian chicken breeds populations. Archiv für Geflügelkunde, 75, 1-6.
Go to original source...
- Li J., Yuan Q., Shen J., Tao Z., Li G., Tian Y., Wang D., Chen L., Lu L. (2012): Evaluation of genetic diversity and population structure of five indigenous and one introduced Chinese goose breeds using microsatellite markers. Canadian Journal of Animal Science, 92, 417-423.
Go to original source...
- MacCluer J., Boyce B., Dyke L., Weitzkamp D., Pfenning A., Parsons C. (1983): Inbreeding and pedigree structure in Standardbred horses. Journal of Heredity, 74, 394-399.
Go to original source...
- Melka M.G., Schenkel F. (2010): Analysis of genetic diversity in four Canadian swine breeds using pedigree data. Canadian Journal of Animal Science, 90, 331-340.
Go to original source...
- Meuwissen T.H.E., Luo Z. (1992): Computing inbreeding coefficients in large populations. Genetics Selection Evolution, 24, 305-313.
Go to original source...
- Mokhtari M.S., Moradi Shahrbabak M., Esmailizadeh A.K., Moradi Shahrbabak H., Gutierrez J.P. (2014): Pedigree analysis of Iran-Black sheep and inbreeding effects on growth and reproduction traits. Small Ruminant Research, 116, 14-20.
Go to original source...
- Pjontek J., Kadlecik O., Kasarda R., Horny M. (2012): Pedigree analysis in four Slovak endangered horse breeds. Czech Journal of Animal Science, 57, 54-64.
Go to original source...
- Qing-Ping T., Shuang-Jie Z., Jun G., Kuan-Wei C., HuoLin L., Jian-Dong S. (2009): Microsatellite DNA typing for assessment of genetic variability in Taihu goose: a major breed of China. Journal of Animal and Veterinary Advances, 8, 2153-2157.
- Rabsztyn A. (2006): Zatorska goose population as a part of the Polish genetic resources of waterfowl. Ph.D. Diss. Cracow, Poland: University of Agriculture in Cracow. 92 p. Available from: University Library. (in Polish)
- Rischkowsky B., Pilling D. (eds) (2007): The State of the World's Animal Genetic Resources for Food and Agriculture. FAO, Rome, Italy.
- Sargolzaei M., Iwaisaki H., Colleau J.J. (2006): CFC: a tool for monitoring genetic diversity. In: Proc. 8 th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 27-28.
- Scherf B.D. (ed.) (2000): World Watch List for Domestic Animal Diversity. FAO, Rome, Italy.
- Siderits M., Baumung R., Fuerst-Waltl B. (2013): Pedigree analysis in the German Paint Horse: genetic variability and the influence of pedigree quality. Livestock Science, 151, 152-157.
Go to original source...
- Spalona A., Renvig H., Cywa-Benko K., Zanon A., Sabbioni A., Szalay I., Benkova J., Baumgartner J., Szwaczkowski T. (2007): Population size in conservation of local chicken breeds in chosen European countries. Archiv für Geflügelkunde, 71, 49-55.
Go to original source...
- Szwaczkowski T., Wezyk S., Stanislawska-Barczak E., Badowski J., Bielinska H., Wolc A. (2007): Genetic variability of body weight in two goose strains under long-term selection. Journal of Applied Genetics, 48, 253-260.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.