Czech J. Anim. Sci., 2015, 60(3):123-131 | DOI: 10.17221/8077-CJAS
Effect of source of methionine in broken rice-soybean diet on production performance, blood chemistry, and fermentation characteristics in weaned pigsOriginal Paper
- 1 Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- 2 Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- 3 Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
This study was conducted to compare the effect of source of methionine (Met) in broken rice-soybean diet on performance, blood biochemistry, and fermentation characteristics in weaned pigs. Forty-eight male crossbreed pigs (BW 11 ± 0.1 kg) were randomly allocated to three groups with four replications in a completely randomized design. The experimental diets were: (1) basal diet without methionine (Control; total sulfur amino acids (TSAA) 0.60%); (2) basal diet supplemented with dl-methionine (DLM) (TSAA 0.76%); and (3) basal diet supplemented with dl-2-hydroxy-4-(methylthio) butanoic acid (LMA) (TSAA 0.76%). Supplementation with DLM and LMA improved growth performance of piglets and decreased blood urea nitrogen and increased serum albumin (P < 0.01). The population of Lactobacillus spp. in the caecum was decreased by both DLM and LMA supplementation (P < 0.05). Succinic acid concentration in the caecum of pigs fed the DLM diet was greater than that of LMA group (P < 0.05). It can be concluded that LMA can be used as a good source of Met (88% bioefficacy, weight/weight) in broken rice-soybean diet, although the serum albumin and fermentation characteristics (succinic acid) in the gastrointestinal tract were different.
Keywords: methionine; short-chain fatty acids; piglets
Published: March 31, 2015 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Alcantara P.E., Cordova E.D., Vileta M.O., Naldo M.E. (1989): Substitution values of rice bran (D1) and rough rice (Palay) for corn in growing finishing swine rations. Philippine Journal of Veterinary and Animal Science, 15, 1-22.
- Bauchart-Thevret C., Stoll C., Chacko S., Burrin D.G. (2009): Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 296, E1239-E1250.
Go to original source...
Go to PubMed...
- Blomberg L., Henrikson A., Conway P.L. (1993): Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Applied and Environmental Microbiology, 59, 34-39.
Go to original source...
Go to PubMed...
- Brown A.E. (2005): Benson's Microbiological Applications. McGraw-Hill, Boston, USA.
- Bunchasak C. (2009): Role of dietary methionine in poultry production. Journal of Poultry Science, 46, 169-179.
Go to original source...
- Butler J.E. (1971): Physicochemical and immunochemical studies on bovine IgA and glycoprotein-a. Biochimica et Biophysica Acta, 251, 435-449.
Go to original source...
Go to PubMed...
- Chung T.K., Baker D.H. (1992): Utilization of methionine isomers and analogs by the pig. Canadian Journal of Animal Science, 72, 185-188.
Go to original source...
- Cummings J.H. (1984): Colonic absorption: the importance of SCFA in man. Scandinavian Journal of Gastroenterology, 19, 89-99.
- Dibner J.J., Buttin P. (2002): Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11, 453-463.
Go to original source...
- Eggum B.O., Hansen I., Larsen T. (1989): Protein quality and digestible energy of selected foods determined in balance trials with rats. Plant Foods for Human Nutrition, 39, 13-21.
Go to original source...
Go to PubMed...
- Feng Z., Qiao S., Ma Y., Wang X., Li X., Thacker P.A. (2006): Efficacy of methionine hydroxy analog and dl-methionine as methionine sources for growing pigs. Journal of Animal and Veterinary Advances, 5, 135-142.
- Fernandes J., Rao A.V., Wolever T.M.S. (2000): Different substrates and methane producing status affect short-chain fatty acid profiles produced by in vitro fermentation of human feces. Journal of Nutrition, 130, 1932-1936.
Go to original source...
Go to PubMed...
- Franco L.D., Fondevila M., Lobera M.B., Castrillo C. (2005): Effect of combinations of organic acids in weaned pig diets on microbial species of digestive tract contents and their response on digestibility. Journal of Animal Physiology and Animal Nutrition, 89, 88-93.
Go to original source...
Go to PubMed...
- Gabert V.M., Sauer W.C. (1995): The effect of fumaric acid and sodium fumarate supplementation to diets for weanling pigs on amino acid digestibility and volatile fatty acid concentrations in ileal digesta. Animal Feed Science and Technology, 53, 243-254.
Go to original source...
- Gaines A.M., Yi G.F., Ratliff B.W., Srichana P., Kendall D.C., Allee G.L., Knight C.D., Perryman K.R. (2005): Estimation of the ideal ratio of true ileal digestible sulfur amino acids: lysine in 8- to 26-kg nursery pigs. Journal of Animal Science, 83, 2527-2534.
Go to original source...
Go to PubMed...
- Kaewtapee C., Krutthai N., Poosuwan K., Poeikhampha T., Koonawootrittriron S., Bunchasak C. (2010): Effects of adding liquid dl-methionine hydroxy analogue-free acid to drinking water on growth performance and small intestinal morphology of nursery pigs. Journal of Animal Physiology and Animal Nutrition, 94, 395-404.
Go to original source...
Go to PubMed...
- Kameue C., Tsukahara T., Yamada K., Koyama H., Iwasaki Y., Nakayama K., Ushida K. (2004): Dietary sodium gluconate protects rats from large bowel cancer by stimulating butyrate production. Journal of Nutrition, 134, 940-944.
Go to original source...
Go to PubMed...
- Kim B.G., Lindemann M.D., Rademacher M., Brennan J.J., Cromwell G.L. (2006): Efficacy of dl-methionine hydroxy analog free acid and dl-methionine as methionine sources for pigs. Journal of Animal Science, 84, 104-111.
Go to original source...
Go to PubMed...
- Knight C.D., Atwell C.A., Wuelling C.W., Ivey F.J., Dibner J.J. (1998): The relative effectiveness of 2-hydroxy4-(methylthio) butanoic acid and dl-methionine in young swine. Journal of Animal Science, 76, 781-787.
Go to original source...
Go to PubMed...
- Lawlor P.G., Lynch P.B., Caffrey P.J., O'Reilly J.J., O'Connell M.K. (2005): Measurements of the acid-binding capacity of ingredients used in pig diets. Irish Veterinary Journal, 58, 447-452.
Go to original source...
Go to PubMed...
- Lewis A.J., Peo Jr. E.R., Moser B.D., Crenshaw T.D. (1980): Lysine requirement of pigs weighing 5 to 15 kg fed practical diets with and without added fat. Journal of Animal Science, 51, 361-366.
Go to original source...
- Margaret A.W. (2006): Avian plasma proteins [serial online]. Available from www.exoticpetvet.net/avian/proteins.html (accessed Apr 3, 2013).
- Meyer D.J., Harvey J.W. (eds) (2004): Veterinary Laboratory Medicine: Interpretation and Diagnosis. Saunders, Elsevier, Philadelphia, USA.
- National Research Council (1998): Nutrient Requirements of Swine. 10th Ed. The National Academies Press, Washington, USA.
- Partanen K. (2001): Organic acids - their efficacy and modes of action in pigs. In: Piva A., Bach Knudsen K.E., Lindberg J.E. (eds): Gut Environment of Pigs. Nottingham University Press, Nottingham, UK, 201-217.
- Partanen K.H., Mroz Z. (1999): Organic acids for performance enhancement in pig diets. Nutrition Research Reviews, 12, 117-145.
Go to original source...
Go to PubMed...
- Poosuwan K., Bunchasak C., Prahkarnkaeo K., Chansawang S., Poeikhampha T. (2007): Effects of adding methionine hydroxy analog free acid to drinking water on growth performance and gastrointestinal functions of broiler chicks during starter period. In: Proc. Internat. Conference on Integration of Science and Technology for Sustainable Development (ICIST), Bangkok, Thailand, 90-94.
- Poosuwan K., Bunchasak C., Kaewtapee C. (2010): Long-term feeding effects of dietary protein levels on egg production, immunocompetence and plasma amino acids of laying hens in subtropical condition. Journal of Animal Physiology and Animal Nutrition, 94, 186-195.
Go to original source...
Go to PubMed...
- Reid I.M., Barnes R.H., Pond W.G., Krook L. (1968): Methionine-responsive liver damage in young pigs fed a diet low in protein and vitamin E. Journal of Nutrition, 95, 499-508.
Go to original source...
Go to PubMed...
- Reifsnyder D.H., Young C.T., Jones E.E. (1984): The use of low protein liquid diets to determine the methionine requirement and the efficacy of methionine hydroxy analogue for the three-week-old pig. Journal of Nutrition, 114, 1705-1715.
Go to original source...
Go to PubMed...
- Risley C.R., Kornegay E.T., Lindemann M.D., Wood C.M., Eigel W.N. (1992): Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. Journal of Animal Science, 70, 196-206.
Go to original source...
Go to PubMed...
- Roth F.X., Kirchgessner M. (1998): Organic acids as feed additives for young pigs: nutritional and gastrointestinal. Journal of Animal and Feed Sciences, 7, 25-33.
Go to original source...
- Sakata T. (1995): Effects of short-chain fatty acids on the proliferation of gut epithelial cells in vivo. In: Cummings J.H., Rombeau J.L., Sakata T. (eds): Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge University Press, Cambridge, UK, 289-305.
- Steel R.G.D, Torrie T.H. (eds) (1980): Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill Book Company, New York, USA.
- Thalacker-Mercer A.E., Johnson C.A., Yarasheski K.E., Carnell N.S., Campbell W.W. (2007): Nutrient ingestion, protein intake, and sex, but not age, affect the albumin synthesis rate in humans. Journal of Nutrition, 137, 1734-1740.
Go to original source...
Go to PubMed...
- Yi G.F., Gaines A.M., Ratliff B.W., Srichana P., Allee G.L., Perryman K.R., Knight C.D. (2006): Estimation of the true ileal digestible lysine and sulfur amino acid requirement and comparison of the bioefficacy of 2-hydroxy-4-(methylthio) butanoic acid and dl-methionine in eleven- to twentysix-kilogram nursery pigs. Journal of Animal Science, 84, 1709-1721.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.