Czech J. Anim. Sci., 2014, 59(8):365-373 | DOI: 10.17221/7587-CJAS

Effect of DGAT1 polymorphisms on the estimated breeding values of Czech Simmental siresOriginal Paper

L. Hanusová1, A. Míková1, L. Večerek1, D. Schroeffelová2, V. Řehout1, L. Tothová1, K. Vernerová1, B. Hosnedlová1, J. Čítek1
1 Department of Genetics and Animal Breeding, Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
2 Czech-Moravian Breeders Association, Hradištko, Czech Republic

The aim was to evaluate the effect of polymorphisms in the promoter and in the coding region of the DGAT1 gene on the estimated breeding values (EBV) of Czech Simmental sires. The K232A polymorphism (n = 191) in the coding region was genotyped by PCR/RFLP, and the KU and SA polymorphisms in the promoter (n = 203) were identified in an automatic sequencer. In the K232A polymorphism, the frequency of the genotype AA (Alanine) was greater than that of the genotype KA, the homozygous genotype KK (Lysine) was not found. Similarly, the allele A predominated over the K allele (0.945 and 0.055). The EBV for milk performance have been assigned to the genotypes, and the associations quantified. For the AA genotype and A allele, positive association with EBV of milk yield and protein yield was found, and negative association with the breeding values of fat percentage and yield, and protein percentage, but only the value of fat content was found to be significant. The positive non-significant association of the A variant with the protein yield was caused by the high milk yield. In the KU polymorphism, the CC genotype was associated significantly with lower EBV for the fat percentage, both the C allele and the CC genotype were associated with higher EBV for milk yield, so both the fat and the protein yield were non-significantly increased. For the diplotypes K232A/KU, there was a significant association with the fat percentage. The AACC combination seemed to have some breeding potential. The K232A polymorphism explained maximum of 6.2% of EBV variability, the KU polymorphism of 4.4%, and the SA polymorphism of 4.2%. The diplotypes K232A/KU explained maximum of 7.4% of variability. The highest proportion of variability was explained for fat percentage. The results confirmed the important role of the BTA14 region in controlling milk performance.

Keywords: cattle; acyl-CoA diacylgycerol transferase1; K232A; promoter; milk performance; breeding; genotypes

Published: August 31, 2014  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hanusová L, Míková A, Večerek L, Schroeffelová D, Řehout V, Tothová L, et al.. Effect of DGAT1 polymorphisms on the estimated breeding values of Czech Simmental sires. Czech J. Anim. Sci. 2014;59(8):365-373. doi: 10.17221/7587-CJAS.
Download citation

References

  1. Abdolmohammadi A., Atashi H., Zamani P., Bottema C. (2011): High resolution melting as an alternative method to genotype diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism in cattle. Czech Journal of Animal Science, 56, 370-376. Go to original source...
  2. Bennewitz J., Reinsch N., Paul S., Looft C., Kaupe B., Weimann C., Erhardt G., Thaller G., Kuhn C., Schwerin M., Thomsen H., Reinhardt F., Reents R., Kalm E. (2004): The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14. Journal of Dairy Science, 87, 431-442. Go to original source... Go to PubMed...
  3. Boleckova J., Matejickova J., Stipkova M., Kyselova J., Barton L. (2012): The association of five polymorphisms with milk production traits in Czech Fleckvieh cattle. Czech Journal of Animal Science, 57, 45-53. Go to original source...
  4. Citek J., Rehout V., Hradecka E., Vecerek L., Panicke L. (2007): The breeding values of German Holstein sires and the DGAT1 polymorphism. Archiv für Tierzucht, 50, 136-146. Go to original source...
  5. Gautier M., Capitan A., Fritz S., Eggen A., Boichard D., Druet T. (2007): Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. Journal of Dairy Science, 90, 2980-2988. Go to original source... Go to PubMed...
  6. Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S., Simon P., Spelman R., Georges M., Snell R. (2002): Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12, 222-231. Go to original source... Go to PubMed...
  7. Grisart B., Farnir F., Karim L., Cambisano N., Kim J.J., Kvasz A., Mni M., Simon P., Frere J.M., Coppieters W., Georges M. (2004): Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America, 101, 2398-2403. Go to original source... Go to PubMed...
  8. Hradecka E., Citek J., Panicke L., Rehout V., Hanusova L. (2008): The relation of GH1, GHR and DGAT1 polymorphisms with estimated breeding values for milk production traits of German Holstein sires. Czech Journal of Animal Science, 53, 238-245. Go to original source...
  9. Kuhn C., Thaller G., Winter A., Bininda-Edmonds O.R.P., Kaupe B., Erhardt G., Bennewitz J., Schwerin M., Fries R. (2004): Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics, 167, 1873-1881. Go to original source... Go to PubMed...
  10. Looft C., Reinsch N., Karall-Albrecht C., Paul S., Brink M., Thomsen H., Brockmann G., Kuhn C., Schwerin M., Kalm E. (2001): A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine chromosome 14. Mammalian Genome, 12, 646-650. Go to original source... Go to PubMed...
  11. Matejickova J., Stipkova M., Sahana G., Kott T., Kyselova J., Matejicek A., Kottova B., Sefrova J., Krejcova M., Melcova S. (2013): QTL mapping for production traits in Czech Fleckvieh cattle. Czech Journal of Animal Science, 58, 396-403. Go to original source...
  12. Meszaros G., Kadlecik O., Kasarda R., Solkner J. (2013): Analysis of longevity in the Slovak Pinzgau population - extension to the animal model. Czech Journal of Animal Science, 58, 289-295. Go to original source...
  13. Pribyl J., Rehout V., Citek J., Pribylova J. (2010): Genetic evaluation of dairy cattle using a simple heritable genetic ground. Journal of the Science of Food and Agriculture, 90, 1765-1773. Go to original source... Go to PubMed...
  14. Pribyl J., Haman J., Kott T., Pribylova J., Simeckova M., Vostry L., Zavadilova L., Cermak V., Ruzicka Z., Splichal J., Verner M., Motycka J., Vondrasek L. (2012): Single-step prediction of genomic breeding value in a small dairy cattle population with strong import of foreign genes. Czech Journal of Animal Science, 57, 151-159. Go to original source...
  15. Pribyl J., Madsen P., Bauer J., Pribylova J., Simeckova M., Vostry L., Zavadilova L. (2013): Contribution of domestic production records, Interbull estimated breeding values, and single nucleotide polymorphism genetic markers to the single-step genomic evaluation of milk production. Journal of Dairy Science, 96, 1865-1873. Go to original source... Go to PubMed...
  16. Riquet J., Coppieters W., Cambisano N., Arranz J.J., Berzi P., Davis S.K., Grisart B., Farnir F., Karim L., Mni M., Simon P., Taylor J.F., Vanmanshoven P., Wagenaar D., Womack J.E., Georges M. (1999): Fine-mapping of quantitative trait loci by identity by descent in outbred populations: application to milk production in dairy cattle. Proceedings of the National Academy of Sciences of the United States of America, 96, 9252-9257. Go to original source... Go to PubMed...
  17. Sanders K., Bennewitz J., Reinsch N., Thaller G., Prinzenberg E.M., Kuhn C., Kalm E. (2006): Characterization of the DGAT1 mutations and the CSN1S1 promoter in the German Angeln dairy cattle population. Journal of Dairy Science, 89, 3164-3174. Go to original source... Go to PubMed...
  18. Schopen G.C.B., Koks P.D., van Arendonk J.A.M., Bovenhuis H., Visker M.H.P.W. (2009): Whole genome scan to detect quantitative trait loci for bovine milk protein composition. Animal Genetics, 40, 524-537. Go to original source... Go to PubMed...
  19. Sigl T., Meyer H.H.D., Wiedemann S. (2012): Gene expression of six major milk proteins in primary bovine mammary epithelial cells isolated from milk during the first twenty weeks of lactation. Czech Journal of Animal Science, 57, 469-480. Go to original source...
  20. Spelman R.J., Ford C.A., McElhinney P., Gregory G.C., Snell R.G. (2002): Characterization of the DGAT1 gene in New Zealand dairy population. Journal of Dairy Science, 85, 3514-3517. Go to original source... Go to PubMed...
  21. Suchocki T., Komisarek J., Szyda J. (2010): Testing candidate gene effects on milk production traits in dairy cattle under various parameterizations and modes of inheritance. Journal of Dairy Science, 93, 2703-2717. Go to original source... Go to PubMed...
  22. Szyda J., Zukowski K., Kaminski S., Zarnecki A. (2013): Testing different single nucleotide polymorphism selection strategies for prediction of genomic breeding values in dairy cattle based on low density panels. Czech Journal of Animal Science, 58, 136-145. Go to original source...
  23. Thaller G., Kramer W., Winter A., Kaupe B., Erhardt G., Fries R. (2003): Effects of DGAT1 variants on milk production traits in German cattle breeds. Journal of Animal Science, 81, 1911-1918. Go to original source... Go to PubMed...
  24. Viitala S., Szyda J., Blott S., Schulman N., Lidauer M., MakiTanila A., Georges M., Vilkki J. (2006): The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics, 173, 2151-2164. Go to original source... Go to PubMed...
  25. Weller J.I., Golik M., Seroussi E., Ezra E., Ron M. (2003): Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population. Journal of Dairy Science, 86, 2219-2227. Go to original source... Go to PubMed...
  26. Winter A., Kramer W., Werner F.A.O., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G., Fries R. (2002): Association of lysine 232 alanine polymorphism in bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proceedings of the National Academy of Sciences of the United States of America, 99, 9300-9305. Go to original source... Go to PubMed...
  27. Winter A., Alzinger A., Fries R. (2004): Assessment of the gene content of the chromosomal regions flanking bovine DGAT1. Genomics, 83, 172-180. Go to original source... Go to PubMed...
  28. Zavadilova L., Stipkova M. (2013): Effect of age at first calving on longevity and fertility traits for Holstein cattle. Czech Journal of Animal Science, 58, 47-57. Go to original source...
  29. Zavadilova L., Zink V. (2013): Genetic relationship of functional longevity with female fertility and milk production traits in Czech Holsteins. Czech Journal of Animal Science, 58, 554-565. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.