Czech J. Anim. Sci., 2008, 53(2):45-54 | DOI: 10.17221/331-CJAS

Models for evaluation of growth of performance tested bulls

J. Přibyl1, H. Krejčová1, J. Přibylova1, I. Misztal2, S. Tsuruta2, N. Mielenz3
1 Institute of Animal Science, Prague-Uhříněves, Czech Republic
2 University of Georgia, Athens, USA
3 University of Halle-Wittenberg, Germany

Before being used for insemination, young bulls of Czech Fleckvieh (CF) are tested for growth at performance-test stations. While at stations, the bulls are weighed monthly. Evaluation included 7 448 bulls with 82 676 records of weight measured from 6 to 520 days of life. In the station-year-period (HYS), which can be prolonged up to 3 months, different groups were tested according to the beginning of growth curve and according to test-days of weighing. Weight analyses were used to handle heterogeneous variability based on age. Legendre Polynomials (LP) with 5 parameters described the average growth curve for HYS classes. Deviations from average curves were decomposed into genetic (G), animal's permanent environment (PE) and residual (RES) components. Functions of (G) and (PE) were tested using LP random regression (RR) methodology with 5 or 3 parameters and Linear Spline (SP) function with 5 knots. Variance increases with the age of the animals. From 100 to 400 days, heritability was nearly the same with a mild depression in the middle of the period. The average was h2 = 0.31 and ended with h2 = 0.36. Results were similar for variance components, heritability, genetic, environmental and phenotype correlations from different models with different LP and SP functions. Higher RES variability occurred only for LP with 3 parameters. For traits like live weight, the RR should have at least 3 parameters and SP function should be used.

Keywords: cattle; random regression; heritability; statistical model; growth curve; bulls

Published: February 29, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Přibyl J, Krejčová H, Přibylova J, Misztal I, Tsuruta S, Mielenz N. Models for evaluation of growth of performance tested bulls. Czech J. Anim. Sci. 2008;53(2):45-54. doi: 10.17221/331-CJAS.
Download citation

References

  1. Albuquerque L.G., Meyer K. (2002): Estimates of genetic covariance functions for growth of Nelore cattle assuming a parametric correlation structure for animal permanent environmental effects. In: 7th WCGALP, August 19-23, Montpellier, France.
  2. Arango J.A., Cundiff L.V., VanVleck L.D. (2002) Genetic parameters for weight, weight adjusted for body condition score, height, and body condition score in beef cows. J. Anim. Sci., 80, 3112-3122. Go to original source... Go to PubMed...
  3. Bohmanová J., Misztal I., Bertrand J.K. (2005): Studies on multiple trait and random regression models for genetic evaluation of beef cattle for growth. J. Anim. Sci., 83, 62-67. Go to original source... Go to PubMed...
  4. Bouška J., Štípková M., Frelich J., Zedníková J., Bartoň L. (2003): Genetic parameters of the traits recorded in the performance test of dual-purpose bulls. Czech J. Anim. Sci., 48, 413-418.
  5. Hyánek J., Hyánková L. (1995): Multiphasic growth curves. Živoč. Výr., 40, 283-286. (in Czech)
  6. Iwaisaki H., Tsuruta S., Misztal I., Bertrand J.K. (2005): Genetic parameters estimated with multitrait and linear spline-random regression models using Gelbvieh early growth data. J. Anim. Sci., 83, 757-763. Go to original source... Go to PubMed...
  7. Kirkpatrick M., Lofsvold D., Bulmer M. (1990): Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 124, 979-993. Go to original source... Go to PubMed...
  8. Krejčová H., Mielenz N., Přibyl J., Schüler L. (2007): Estimation of genetic parameters for daily gains of bulls with multi-trait and random regression models. Arch. Tierz., 50, 37-46. Go to original source...
  9. Legarra A., Misztal I., Bertrand J.K. (2004): Constructing covariance functions for random regressions models for growth in Gelbvieh beef cattle. J. Anim. Sci., 82, 1564-1571. Go to original source... Go to PubMed...
  10. Meyer K. (2005): Advances in methodology for random regression analysis. Aust. J. Exp. Agr., 45, 847-858. Go to original source...
  11. Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D.H. (2002): BLUPF90 and related programs (BGF90). In: 7 th WCGALP, August 19-23, Montpellier, France.
  12. Nešetřilová H. (2005): Multiphasic growth models for cattle. Czech J. Anim. Sci., 50, 347-354. Go to original source...
  13. Nobre P.R.C., Misztal I., Tsuruta S., Bertrand J.K., Silva L.O.C., Lopez P.S. (2003): Genetic evaluation of growth in Nelore cattle by multi-trait and random regression model. J. Anim.Sci., 81, 927-932. Go to original source... Go to PubMed...
  14. Přibyl J., Přibyl J., Váchal J., Pulkrábek J. (1986): The growth and development of the bulls of the Bohemian Peid Breed. Živoč. Výr., 31, 673-684. (in Czech)
  15. Přibyl J., Krejčová H., Přibylová J., Misztal I., Bohmanová J., Štípková M. (2007): Trajectory of body weight of performance tested dual-purpose bulls. Czech J. Anim. Sci., 52, 315-324. Go to original source...
  16. Pulkrábek J., Šiler R., Nešetřilová H., Mejsnar J. (1984): Analysis of selected growth characters of breeding bullocks during the rearing period. Sci. Agric. Bohemoslovaca, 16, 181-189.
  17. Rasch D., Mašata O. (2006): Methods of variance components estimation. Czech J. Anim. Sci., 51, 227-235. Go to original source...
  18. Rektorys K., et al. (1963): Přehled užité matematiky. Státní nakladatelství technické literatury, Prague.
  19. SAS (1989): SAS/STAT User's Guide, Version 6, 4th ed., Vol. 2. SAS Institute, Inc., Cary, North Carolina, USA.
  20. Schaeffer L.R., Jamrozik J., Kistemaker G.J., Van Doormaal B.J. (2000): Experience with a test-day model. J. Dairy Sci., 83, 1135-1144. Go to original source... Go to PubMed...
  21. Varona L. (2004): Statistical Analysis of Longitudinal Data. In: 55th Ann. Meet. EAAP, Bled, September 5-8. USA.
  22. Vuori K., Stranden I., Sevon-Aimonen M.-L., Mäntysaari E.A. (2006): Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function. Genet. Sel. Evol., 38, 343-358. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.