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Abstract: Cattle identification systems are advancing to meet the growing demands of precision livestock manage-
ment, traceability, and ethical animal treatment. This study investigates three methods: body texture recognition, 
QR code collars, and numerical labelling, implemented using the YOLOv8 convolutional neural network. Each 
method was evaluated in terms of accuracy, scalability, adaptability to dynamic herd changes, and operational 
efficiency under various environmental conditions. Body texture recognition, while leveraging unique natural 
patterns and achieving a mean Average Precision (mAP50–95) of 0.78 proved limited by its reliance on frequent 
dataset retraining to accommodate changes in herd composition and susceptibility to misidentification in larger 
herds. QR code collars demonstrated adaptability in dynamic herds by enabling pre-trained convolutional neural 
networks to assign reserved codes to new animals without retraining, while removing animals involves simply 
deleting their codes from the system. This approach also achieved an mAP50–95 of 0.71, which was lower than 
the body texture-based approach, but offered greater flexibility in herd management. Despite this adaptability, 
this method demonstrated significant challenges in real-world environments. Occlusion caused by feeders, bar-
riers, or animal movements, along with low-resolution imaging and poor lighting conditions, can compromise 
detection accuracy, particularly in larger herds with obstructive barn layouts. The numerical labelling method 
emerged as the most effective solution to dynamic cattle identification, achieving the highest mAP50–95 of 0.84. 
It provided a scalable and highly accurate approach that integrates seamlessly with automated systems. Unlike tra-
ditional body marking techniques such as ear notching and branding, numerical labelling is less invasive, painless, 
and highly scalable, aligning with ethical livestock management practices while maintaining consistent accuracy 
across diverse environmental conditions.
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Since the early 1970s, cattle identification has 
become a global concern, prompting research in-
stitutes across various countries to engage in de-
veloping different identification methods. This 
marked the beginning of efforts to address the 
need for efficient and reliable methods of track-
ing and identifying livestock (Rossing 1999). In the 
early 1970s, John Bridle at the National Institute 
of Agricultural Engineering in Silsoe, UK, devel-
oped a cattle identification system that was tested 
on an experimental farm (Bridle 1973). Around the 
same time, the Technical and Physical Engineering 
Research Institute and the Institute of Agricultural 
Engineering in Wageningen, Netherlands, devel-
oped an automatic identification system based 
on  Pulse Code Modulation (PCM) technology, 
which was also tested on a practical farm (Rossing 
1999). Later on, a variety of other animal identifica-
tion methods have been developed.

Accurate animal identification is crucial for re-
liable experimentation in various research fields. 
When selecting an identification method, several 
factors must be considered: the uniqueness and 
permanence of the individual label, the suitability 
of the method for the specific animal species, the 
expertise required for applying and interpreting 
the identification mark, and the overall cost of im-
plementation. These factors ensure that the chosen 
method effectively meets the needs of both research 
accuracy and practical application. Initially, popular 
cattle identification methods were limited to clas-
sical methods such as body marking and wearable 
devices such as ear tags and collars. However, with 
recent advancements in precision livestock farming 
technologies and increased awareness of animal 
welfare, research has shifted towards more natu-
ral, non-invasive methods of cattle identification 
based on biometrics, as each cow possesses unique 
external biometric characteristics that can be used 
for individual identification (Zhao and He 2015).

This paper investigates three distinct cattle 
identification methods: body texture recognition, 
QR code collars, and numerical labelling, evaluat-
ing their effectiveness in addressing operational 
challenges in the livestock industry. Body texture 
recognition utilises the unique coat patterns of cat-
tle, enabling identification based on their natural 
physical characteristics. QR code collars provide 
a standardised approach by encoding animal IDs 
into visually scannable codes affixed to collars 
worn around the cattle necks. Numerical labelling, 

on the other hand, involves assigning and display-
ing unique numbers directly on the animals for easy 
identification. Each method was implemented and 
assessed using the YOLOv8 (You Only Look Once) 
object recognition model, tailored to address the 
unique requirements of each approach. By system-
atically comparing these identification methods, 
this study seeks to determine the most effective so-
lution for varying farm conditions, group sizes, and 
environmental factors. The findings aim to guide 
the development of more efficient and scalable cat-
tle identification systems, enhancing operational 
efficiency in the livestock industry.

CLASSIFICATION OF CATTLE 
IDENTIFICATION METHODS: 
A LITERATURE REVIEW

Cattle identification methods can be classified 
into two main categories: natural feature-based 
methods, also referred to as biometric methods, 
and artificial marker-based methods, subcatego-
rised under mechanical and electronic methods 
(Awad 2016).

Natural feature-based identification 
methods

Natural cattle identification methods can be fur-
ther categorised based on  their focus into two 
subcategories: body part-based identification and 
texture-based identification (Shen et al. 2020). 
Body part-based identification involves recognising 
individual cattle by analysing specific body parts, 
such as the muzzle, face, back, or trunk. For ex-
ample, the muzzle may display distinct nostril pat-
terns and pigmentation (Li et al. 2021), while the 
face may feature unique markers such as eye spac-
ing, ear shapes, and facial markings (Mahato and 
Neethirajan 2024). Similarly, the back and trunk 
can be identified through characteristics like con-
tours, spine shapes, or distinctive scars and marks 
(Zin et al. 2020). On the other hand, texture-based 
identification examines the entire body or large 
visible sections of the animal, focusing on overall 
surface patterns, such as fur colouring or spot ar-
rangements. Both approaches leverage the natural 
variability in these features, making them theoreti-
cally well-suited for precise identification.
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Figure 1

Many researchers have conducted experiments 
for cattle identification based on specific body 
parts. For example, Kumar et al. (2018) proposed 
a cow identification system based on their primary 
muzzle point. The system employed convolutional 
neural networks (CNN) and deep confidence net-
works to extract features from the cow’s muzzle for 
identification, achieving an identification accuracy 
of 98.99%, regardless of the challenge of capturing 
the cow’s muzzle. Similar works were also investi-
gated by different researchers, including Noviyanto 
and Arymurthy (2013). Kumar et al. (2016) also 
presented computer vision approaches to cattle 
recognition using their facial images, achieving 
good recognition accuracy. Other researchers, 
e.g. Kim et al. (2005), also investigated the cattle 
identification approaches based on their face im-
ages. The common challenges highlighted by all 
researchers included poor illumination and the 
pose (Kumar et al. 2016). Zin et al. (2020) also ex-
plored the effectiveness of image-processing tech-
nologies in identifying individual cows along with 
deep learning techniques. The back images of cows 
in a milking parlour were captured and used to train 
a convolutional neural network to identify individual 
cows, achieving an accuracy of 97.01% for the cow’s 
back pattern identification. Zhao and He (2015) in-
vestigated the cattle identification approach based 
on cows’ trunks. Side-view images were collected 
and later cropped only to remain with cows’ trunk 
images, used to train a convolutional neural net-
work, resulting in a recognition accuracy of over 
90%. Even though their study achieved good results, 
relying solely on the trunk region for identifica-
tion poses a great challenge. Although the trunk 
is a more stable region for detection compared 
to the muzzle or face, this approach overlooks im-
portant features from other parts of the cow, such 
as the head and legs, which also have unique con-
tour and texture characteristics (Shen et al. 2020). 
To address this challenge, Shen et al. (2020) con-

ducted an experiment to identify individual cows 
while exploiting all the information of  the cow 
object in side-view images, including head, trunk 
and leg regions, by means of convolutional neu-
ral networks, achieving an accuracy of 96.65%. 
Similarly, Hu et al. (2020) proposed a cow identi-
fication method based on the fusion of deep parts 
features (see Figure 1) using convolutional neural 
networks and a support vector machine (SVM) 
classifier, achieving 98.36% cow identification 
accuracy.

While body part-based identification methods 
have certain advantages, they face significant chal-
lenges that limit their reliability in dynamic environ-
ments. The practical application of these methods 
is hindered by several factors. Identification ef-
fectiveness heavily depends on the distinctiveness 
of the selected body part, which can vary consider-
ably among individuals within a herd. Moreover, 
maintaining the consistent visibility of specific 
body regions is often challenging in real-world 
scenarios. For instance, the muzzle may be ob-
scured during feeding, the face may be blocked 
by movement or other animals, and the trunk may 
be partially hidden by structural barriers or camera 
angles. These issues result in inconsistencies in the 
captured data, reducing the reliability of identifi-
cation outcomes. Furthermore, body part-based 
methods may often require specialised imaging 
techniques to target specific regions, which may 
complicate the deployment of the system in diverse 
barn environments.

In contrast, texture-based identification analy-
ses the overall surface details of the animal, such 
as fur patterns, skin irregularities, and subtle vari-
ations in colouration. This approach examines the 
entire body or its significant portions, capturing 
comprehensive characteristics that differentiate 
one animal from another. Texture-based methods 
are particularly advantageous in situations where 
the animal’s full or partial body is visible, as they 

Figure 1. Some parts of interest for cow identification: (A) muzzle, (B) face, (C) back, (D) trunk, and (E) overall cow 
object (Hu et al. 2020)

(A) (B) (C) (D) (E)
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Figure 2

do not rely on specific anatomical features. This 
flexibility makes them applicable even when certain 
body parts are obscured.

Artificial marker-based identification 
methods

Artificial cattle identification methods have been 
a critical practice in livestock management for cen-
turies. They can also be classified under mechanical 
and electronic methods (Bai et al. 2017). Ear tags, 
collars and body marking are among the examples 
of mechanical methods, whereas electronic meth-
ods use Radio Frequency Identification (RFID) for 
identification (Achour et al. 2020). Considering the 
scope of this study, our focus will be limited only 
to mechanical methods.

Among the earliest techniques, body marking has 
been used since 1 000 BCE (Before Common Era), 
when nomadic herders employed branding irons 
and colour pigments to distinguish livestock and 
prevent theft (Landais 2000). This practice contin-
ues in some regions today, particularly on small-
scale farms (Bai et al. 2017). Ear tagging has also 
been one of the most widely adopted cattle identi-
fication methods, known for its cost effectiveness 
and convenience. Ear tags are generally made from 
plastic and can include barcodes, alphanumeric 
codes, or colour patterns for easy differentiation. 
Properly designed tags must resist tampering, re-
main legible over time, and securely attach without 
harming the animal.

Ear tagging continues to be a practical and widely 
adopted method of cattle identification, even in this 
century, due to its reliability and cost effectiveness. 
In many countries, ear tags are integral to dairy 
farm operations, where they align with internation-
al standards for identifying individual cows. From 
birth, each calf is assigned a unique ID number that 
is registered in a centralised database. This unique 

identifier comprises details like the responsible or-
ganisation, the country code (e.g. SI for Slovenia), 
and a  specific number, which are both printed 
as digits and encoded as a barcode (see Figure 2).

The practicality of ear tagging has been further 
enhanced through technological advancements. 
For example, Zin et al. (2020) have employed pre-
trained YOLO models to develop ear tag recogni-
tion systems, achieving impressive accuracy rates 
of 92.5% in identifying individual cows. Similarly, 
image processing techniques and convolutional 
neural networks have been used to create systems 
capable of managing dairy cows with an accuracy 
of 84% (Zin et al. 2020). These innovations dem-
onstrate that ear tagging remains not only relevant 
but also adaptable to modern precision farming 
practices, highlighting its enduring value in the 
agricultural industry.

Collar tagging also offers another practical solu-
tion to cattle identification, particularly in contexts 
where removability and flexibility are important. 
One study used plastic plates with digit numbers af-
fixed to collars, achieving an impressive 93.65% ac-
curacy using the Faster R-CNN deep learning model 
to detect and identify individual cows (Bezen et al. 
2020). Collars provide flexibility, as they can be re-
moved or replaced easily, although they may be less 
durable in harsh environments compared to ear 
tags. Despite these limitations, collars are particu-
larly useful when integrated with advanced recogni-
tion technologies, making them a practical solution 
to herd management in certain settings.

Together, classical identification methods such 
as body marking, ear tags, and collars have laid 
a  strong foundation for livestock management, 
demonstrating reliability and practicality across 
diverse farming contexts. By integrating these con-
ventional techniques with modern advancements 
like RFID systems, barcoding, and machine learn-
ing-based recognition models, their functionality 
and efficiency can be significantly enhanced, pav-
ing the way to more precise and scalable solutions 
in animal identification.

EXPERIMENTAL EVALUATION 
OF INDIVIDUAL METHODS USING 
CONVOLUTIONAL NEURAL NETWORKS

The experimental part of  this study was con-
ducted at the Opařany Agricultural Cooperative Figure 2. A sample ear tag that is attached to the calf ’s ear
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on a dairy cow farm located in the Czech Republic. 
The whole experiment was designed to comply with 
animal welfare principles. The system for image 
acquisition consisted of a set of several cameras 
installed in the barn. The camera systems for each 
method are described in their relevant sections.

The model performance was evaluated using 
standard object detection metrics: Precision, 
Recall, and mean Average Precision (mAP). These 
are defined as follows:

	 (1)

	
(2)	

(3)

where:
TP 	 – number of true positives;
FP 	 – number of false positives;
FN 	 – number of false negatives.

The mAP50–95 represents the average preci-
sion calculated at  multiple Intersection-over-
Union (IoU) thresholds ranging from 0.50 to 0.95 
(in increments of 0.05), and it is used to measure 
the overall detection accuracy of the model across 
classes. These metrics provide a comprehensive 
view of the model performance in object detec-
tion tasks.

Cattle identification based on body texture

This method was first evaluated in a small herd 
(6 cows). The camera system was designed to col-
lect data in a 5 × 5 m enclosed pen. The video foot-
age was continuously recorded for 1 month under 
both daylight and nighttime conditions, which was 
then used to generate image data. The developed 
camera system consisted of two types of IP cameras 
(Hikvision DS-2CD2T46G2-2I RGB). The cam-
eras were placed on the wall in a line, one above 
the other. The first camera was placed at a height 
of 4.5 m, and the second one at a height of 5.5 m. 
The above height positioning of the cameras was 
chosen so that their field of view would cover the 
entire area defined for animal movement, and also 

to take advantage of the possibility of obtaining 
more variable data by using different angles.

An input dataset was created for training a con-
volutional neural network model applicable to the 
identification of individual animals in a small herd, 
with its properties illustrated in Figure 3. In the 
top left part of the figure, the data shows the fre-
quency of representation for each class (cow 1–6) 
in the dataset, revealing that the objects cow 1 and 
cow 2 were the most frequent, while cow 5 and cow 6 
were the least frequent. The top right part presents 
the shapes of the individual bounding boxes. In the 
bottom left, the occurrence of observed objects 
is visualised, and in the bottom right, the relative 
size of the bounding boxes compared to the im-
age is shown. Most bounding boxes had heights 
ranging from 20% to 50% of the image height, and 
the bounding box widths rarely exceeded the range 
of 10–40% of the image width.

To further enhance dataset variability and sup-
port robust model generalisation, an integrated 
augmentation pipeline was developed. It con-
sisted of  various geometric transformations 
such as cutouts, resizing, rotation, and flipping. 
Further photometric transformations to simu-
late image variability were also performed. These 
include blurring, brightness and contrast varia-
tion, etc. The total number of objects in the input 
dataset after augmentation was 20 900.

YOLOv8 model with a batch size of 4, learning 
rate of 0.01 and SGD optimiser was trained for 
100 epochs on a computer setup with an Intel(R) 
Core(TM) i9-10940X processor, an  NVIDIA 
GeForce RTX 3090  graphics card, and the 
Windows 10 Pro operating system. The progres-
sion of the observed metric values throughout the 
training is shown in Figure 4.

The results demonstrate a sharp improvement 
in  the metrics Precision, mAP50, Recall, and 
mAP50–95 during the first 10 epochs. Afterwards, 
the rate of improvement slowed significantly, but 
all metrics continued to  show positive trends. 
Throughout all 100 epochs, the loss metrics for 
bounding boxes, objects, and classes continued 
to decrease, while the mAP50–95 value, considered 
the most critical metric for assessing the accuracy 
of the trained model predictions, kept increasing. 
From epoch 50 onward, the precision, recall, and 
mAP50 values remained almost constant, indi-
cating an appropriate training duration (number 
of epochs).

( )
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Figure 3. Visualisation of  training dataset properties for the body texture recognition method, based on  a  herd 
of 6 dairy cows
Top left – frequency of each class in the dataset (cows 1–6); top right – dimensions of bounding boxes; bottom left – 
occurrences of observed objects; bottom right – relative sizes of bounding boxes compared to the image size

Figure 4. Training progression of the YOLOv8 model applied to body texture recognition in a 6-cow dataset
Hyperparameters: batch size = 4, learning rate = 0.01, SGD optimiser. The plot shows the evolution of key metrics (preci-
sion, recall, mAP50, mAP50–95) and loss values over 100 epochs
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Figure 7

Based on the results obtained from training the 
convolutional neural network model, we can create 
two supporting graphs, the F1 curve (Figure 5) and 
the PR (Precision-Recall) curve (Figure 6), which 
help to better illustrate the properties of the trained 
model. The F1 curve allows us to determine the op-
timal confidence threshold setting that can be ap-
plied to inference in the real-world use. In this case, 
the optimal threshold is 0.879, which is considered 
a value indicating very good recognition capabili-
ties of the trained model. The PR curve illustrates 
the balance between Precision and Recall values. 
This enables a graphical evaluation of the propor-

tion of True Positive results to Positive Predictions. 
For our YOLOv8  model with hyperparameters 
of the batch size 4 and learning rate of 0.01, the 
curve is nearly optimal, showing that no particu-
lar class stands out as notably challenging for the 
trained model to identify.

The functionality and accuracy of the trained 
model designed to  identify individual animals 
in a herd of 6 animals are presented in Figure 7. 
It is evident that the trained model can easily iden-
tify individual objects in the image and reliably 
determine which specific object it is (cow 1–6). 
For better clarity, the segmentation of each object 
is represented in a different colour. Within such 
a small group of animals, it was possible to select 
objects that significantly differ in their texture and 
colouring, which is why the trained model was able 
to identify individual objects with high accuracy 
(almost 100%).

Cattle identification using QR code collars

This method was evaluated under a medium-
sized herd of up  to 30 cows, each one wearing 
a QR code collar. The system consisted of eight 
HIKVISION DS-2CD2T46G2-2I RGB cameras 
strategically deployed to ensure the full visual cov-
erage of the observation area. Similarly, the con-
tinuous video footage was recorded over 1 month 
under varying lighting and activities. Extracted 
images were also augmented up to 91 694 images.

Figure 5. F1-score curve of the YOLOv8 model trained 
for body texture recognition
The optimal confidence threshold was determined 
to be 0.879, indicating a strong model performance across 
all classes

Figure 6. Precision–Recall (PR) curve of  the 
YOLOv8  model trained for body texture-based identi-
fication
The curve illustrates a strong balance between precision 
and recall across all six cow classes

Figure 7. Output of the trained YOLOv8 model applied 
to  a  closed herd of  6 dairy cows under daylight condi-
tions, recognising each detected individual (cow  1–6) 
based on its body texture
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YOLOv8 with similar hyperparameter values 
as the ones used for the previous method was cho-
sen for training: a batch size of 4, a learning rate 
of 0.01 and an SGD optimiser. With the above set-
tings, it was trained for 120 epochs on a computer 
setup with an Intel(R) Core(TM) i9-10940X pro-
cessor, NVIDIA GeForce RTX 3090 graphics card, 
and the Windows 10 Pro operating system. The 
progression of the observed metrics during train-
ing is shown in Figure 8. This figure demonstrates 
a sharp improvement in learning outcomes during 
the first 30 epochs. Subsequently, the learning rate 
slowed considerably, though the metrics continued 
to show improvement. Throughout all 120 epochs, 
the loss values for bounding boxes, objects, and 
classes decreased, while the mAP50–95 metric, 
considered the most important metric for the mod-
el prediction accuracy, continued to rise. Precision, 
recall, and mAP50 remained nearly constant from 
epoch 30 onward.

The results obtained from training the convolu-
tional neural network model allow us to create two 
auxiliary graphs, the F1 curve and the PR curve 
(see Figure 9), which help to better map the char-
acteristics of the trained model. The F1 curve can 
determine the optimal confidence threshold for 
inference with the trained model for real-world 
applications. In this case, the optimal threshold 
was 0.452. The PR curve shows the balance be-

tween Precision and Recall, enabling a graphical 
evaluation of the True Positive rate and Positive 
Predictions. For our trained model with hyperpa-
rameters of the batch size 4 and learning rate 0.01, 
the PR curve is nearly optimal, indicating that none 
of the identified classes possesses particular chal-
lenges for detection.

When evaluating the model reliability, problem-
atic zones were identified where the QR code detec-
tion was challenging. These problematic areas are 
the edges of the camera footage: on the left edge, 
where the feeding aisle is located, the animals lean 
toward the feed, often moving the QR code out 
of the camera range or making it difficult for the 
camera to read, which can lead to misidentifica-
tion. A similar issue occurred on the right edge 
of the footage, where similar situations arose. In the 
middle of  the footage, model reliability is  very 
high, except in cases where QR codes are obscured 
by structures separating individual resting areas 
in the barn.

Cattle identification based on numerical 
labelling

The image acquisition system and data prepro-
cessing techniques used to evaluate this method 
were similar to the QR code approach. However, 

Figure 8. Training progress of the YOLOv8 model for QR code collar recognition in a herd of 30 cows
The network was trained over 120 epochs using a batch size of 4, learning rate of 0.01, and SGD optimiser. Steady improve-
ments in mAP and loss values are observed
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the herd size was increased up to 50 dairy cows 
in the observation. Of these, 30 cows were marked 
with unique numerical identifiers using special 
marking animal-safe colours, commonly used 

to mark animals. An input dataset of 91 694 im-
ages was created following similar augmentation 
techniques mentioned above, with its properties 
illustrated in Figure 10.

Figure 9. F1-score curve (left) and Precision-Recall (PR) curve (right) of  the YOLOv8 model trained on QR code 
collar data
The model shows a high balance between precision and recall across all classes

Figure 10. Visualisation of training dataset properties for numerical labelling identification, based on a herd of 50 cows 
(30 marked)
Top left – class representation; top right – shapes of bounding boxes; bottom left – object occurrence distribution; bottom 
right – relative bounding box sizes.
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The following hyperparameters were selected for 
training: a batch size of 4, a learning rate of 0.01 and 
an SGD optimiser. With the above setup, YOLOv8 
was trained for 75 epochs on a computer setup 
with an Intel(R) Core (TM) i9-10940X processor, 
NVIDIA GeForce RTX 3090 graphics card, and 
Windows 10 Pro operating system. The progres-
sion of the values of each observed metric during 
learning is shown in Figure 11.

It shows a sharp improvement in the learning 
performance over the first 10 epochs. Subsequently, 
there was a significant slowdown in learning out-

comes, but still, the values of each metric showed 
an improvement. Throughout all 75 epochs, there 
was a decrease in the values of the loss metrics 
of  bounding boxes, objects and classes. At  the 
same time, there was a steady increase in the val-
ue of mAP50–95, which is considered the most 
important metric in terms of the accuracy of the 
predictions of the trained model. Precision, recall 
and mAP50 values have remained virtually constant 
since epoch number 30. With respect to the re-
maining improving metrics, the appropriate train-
ing time was chosen.

Figure 11. YOLOv8 training progression for numerical labelling method with the hyperparameters of batch size 4, 
learning rate 0.01 and SGD optimiser

Figure 12. F1-score curve of the YOLOv8 model trained 
for numerical label identification with a batch size of 4, 
a learning rate of 0.01, and the SGD optimiser

Figure 13. PR curve of the YOLOv8 model for numeri-
cal labelling, illustrating class-wise variation in precision 
and recall performance
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Figure 15

Figure 14

From the results obtained during the training 
of the convolutional neural network model, we can 
create two auxiliary graphs: the F1 curve and the 
PR (Precision-Recall) curve. These graphs help us 
better map the properties of the trained model. The 
F1 curve, shown in Figure 12, allows us to determine 
the optimal reliability threshold that can be applied 
during the inference of the trained model for the 
real-world use. In this case, the optimal threshold 
value is 0.648. The PR curve displayed in Figure 13 
illustrates the balance between Precision and Recall 
values, enabling a graphical assessment of the pro-
portion of true positives to positive predictions. For 
our trained YOLO model with the hyperparameters 
of batch size 4 and learning rate 0.01, the curve 
approaches an optimal shape. However, it is also 

evident that the model faces greater challenges 
in identifying certain classes compared to others.

The system was able to detect marked animals 
in an open group, which also contains unmarked 
animals that are outlined in red bounding boxes 
in the images. Each marked cow was assigned a dif-
ferent colour for easy distinction in the processed 
image. For example, in Figure 14, in the left part, 
from the top, cow 25 is shown in green, cow 24 
in yellow, cow 31 in blue, and cow 29 in turquoise. 
The training dataset for this convolutional neu-
ral network model was created from the outset 
to cover the widest possible range of conditions 
that may occur in the barn. Consequently, the da-
taset included images with significantly poor image 
quality and poor lighting conditions. As a result, 
the model is capable of detection even at twilight 
or nighttime, as demonstrated in Figure 15.

PERFORMANCE COMPARISON 
OF THE INVESTIGATED METHODS: 
INSIGHTS FROM EXPERIMENTAL 
EVALUATION IN TERMS OF DYNAMIC 
CATTLE IDENTIFICATION

Dynamic cattle monitoring presents unique chal-
lenges, requiring identification systems to adapt 
seamlessly to  changing group compositions, 
such as the addition or removal of animals, while 
maintaining accuracy and efficiency (Montalvan 
et al. 2024).

Body texture recognition

Our findings highlight that the body texture 
recognition, which relies on the unique visual fea-
tures of individual animals such as coat patterns 
and colouration, eliminates the need for physical 
markers and leverages natural variability. However, 
this method faces significant challenges in dynamic 
group scenarios. Adding a new animal requires col-
lecting additional images, updating the dataset, and 
retraining the model, similar to when an individual 
animal is removed from the herd, making the pro-
cess both time-consuming and computationally in-
tensive. Additionally, in herds with many animals, 
similar body patterns increase the risk of misiden-
tification, further limiting the scalability of this 
approach.

Figure 14. Identification of individual animals in the barn 
environment at  the feeding and resting areas using the 
trained convolutional neural network model: unmarked 
animals  ‒ red bounding box, cow  25  ‒ green bound-
ing box, cow 24 ‒ yellow bounding box, cow 31 ‒ blue 
bounding box, and cow 29 ‒ turquoise bounding box

Figure 15. Identification of individual animals in the barn 
environment at  the resting area under difficult lighting 
conditions using the trained convolutional neural net-
work model: unmarked animals  ‒ red bounding box, 
cow 25 ‒ green bounding box, cow 3 ‒ orange bounding 
box, cow 28 ‒ dark green bounding box, and cow 29 ‒ 
turquoise bounding box
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QR code collars

QR code collars demonstrated greater adapt-
ability in dynamic environments. A convolutional 
neural network can be pre-trained on thousands 
of unique codes, with additional codes reserved 
for future use. When a new animal is introduced, 
the system assigns an unused code, eliminating the 
need for retraining. Similarly, removing an animal 
is straightforward and involves deleting its corre-
sponding code. Despite these advantages, the QR 
code approach faces notable limitations in real-
world scenarios. In larger herds, misidentification 
can occur due to visually similar codes or occlu-
sion caused by feeders, barriers, or animal move-
ment. Low-resolution imaging and poor lighting 
exacerbate these issues, impacting the reliability 
of the QR-based identification method in complex 
barn environments.

Numerical labelling

Numerical labelling emerged as the most practi-
cal and effective solution for dynamic cattle iden-
tification. By marking animals with numbers using 
special markers commonly employed in livestock 
management, this method eliminates the need 
for retraining or complex visual pattern analysis. 
Numerical labelling proved to be highly efficient for 
on-site implementation, offering consistent perfor-
mance even in challenging environments. Its sim-
plicity and reliability make it a robust alternative 
to body texture recognition and QR code collars 
in dynamic monitoring systems.

Overall, the YOLOv8 model, trained across body 
texture recognition, QR codes, and numerical la-
bels, demonstrated unique strengths and limita-
tions for each method, as summarised in Table 1. 
Numerical labelling achieved the highest mAP50–

95 under diverse environmental conditions, show-
casing its robustness and adaptability. In contrast, 
QR code tagging faced challenges in detection reli-
ability due to occlusion and positional variances 
within the barn setting.

Numerical labelling in comparison with 
traditional body marking techniques

Comparing our best method, numerical labelling, 
with traditional body marking methods such as ear 
notching, ear tattooing, and branding, highlights its 
significant advantages in scalability, accuracy, and 
animal welfare. While these conventional methods 
served as valuable identification tools in the past, 
they are increasingly unsuitable for the demands 
of  modern livestock management due to  their 
invasive nature, limited practicality, and ethical 
concerns.

Ear notching, for example, involves cutting small 
V-shaped sections into specific locations on the an-
imal’s ears to encode unique identifiers. Although 
simple and cost-effective, this method causes sig-
nificant pain and distress to the animal, raising 
serious welfare concerns as the global awareness 
of animal rights continues to grow. Additionally, ear 
notching is labour-intensive and lacks scalability, 
making it impractical for larger herds where effi-
cient and automated systems are essential (Noonan 
et al. 1994; Leslie et al. 2010).

Ear tattooing, another traditional method, also 
subjects animals to  invasive and painful proce-
dures. A special tattoo piercer is used to punch 
holes into the inner surface of the ear, after which 
indelible ink is applied to fill the holes. The ink 
becomes trapped under the skin, forming visible 
letters or numbers (Awad 2016). This process, while 
seemingly less severe than ear notching, involves 
puncturing the sensitive ear tissue, causing discom-

Table 1. Comparison of the evaluated methods

Identification method Precision Recall mAP50–95 Optimal 
threshold Notes

Body texture recognition 0.86 0.84 0.78 0.879 limited accuracy in large herds

QR code collars 0.75 0.77 0.71 0.452 challenges with head movement 
and occlusion

Numerical labelling 0.91 0.89 0.84 0.648 effective in varied lighting and 
large groups
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fort and distress. Moreover, tattoos require a close 
inspection for identification, making them labour-
intensive and impractical for managing medium- 
or large-sized herds.

Branding methods, whether hot or freeze brand-
ing, present even greater ethical and practical 
challenges. Hot branding, which involves burning 
a mark onto the animal’s skin, is a highly painful 
process that has been prohibited in some countries 
due to its severe impact on animal welfare. Freeze 
branding, while less painful than hot branding, re-
lies on destroying pigment cells to create a white 
mark on the animal’s coat. This approach is ineffec-
tive for animals with white fur and can be tempo-
rarily obscured if the mark blends with the animal’s 
natural colouration (Awad 2016). Both branding 
techniques are painful, fail to meet modern welfare 
standards, and lack the flexibility required for scal-
able herd management.

In contrast to these traditional methods, numeri-
cal labelling provides a non-invasive, scalable, and 
welfare-conscious alternative. By marking animals 
with temporary numbers using livestock-safe spray 
markers, this method completely avoids the physi-
cal pain, tissue damage, and stress associated with 
invasive techniques like ear notching, tattooing, 
or branding. The application process is quick, pain-
less, and requires minimal restraint, aligning with 
modern animal welfare standards. Additionally, 
because markings can be reapplied as needed with-
out harming the animal, this method offers flex-
ibility and adaptability in dynamic farm settings. 
Numerical labelling also eliminates the need for 
close physical inspection or labour-intensive manu-
al recording, as the identifiers are easily recognised 
and processed by convolutional neural networks. 
This makes it especially suitable for use in precision 
livestock farming systems where animal well-being, 
traceability, and automation are critical. Overall, 
digital labelling represents an ethically responsible 
and operationally efficient approach to individual 
animal identification.

CONCLUSION

In conclusion, the findings of this study provide 
valuable insights into the effectiveness of various 
identification methods for cattle within preci-
sion livestock management systems. Each iden-
tification method presents unique strengths and 

limitations, and the choice will depend on  the 
specific operational context and the unique needs 
of individual farms, varying according to herd size, 
operational needs, and environmental constraints. 
Farms with smaller herds may benefit from the sim-
plicity of QR codes or the natural identification 
potential of body texture recognition, provided 
their herd composition is stable. Conversely, large-
scale operations may find the numbering method 
to be the most feasible option due to  its adapt-
ability, reliability, and consistency across variable 
environmental conditions.

Despite the promising results, this study ac-
knowledges several limitations. Future research 
could further optimise these identification meth-
ods, focusing on improving robustness in texture 
recognition for larger herds and minimising oc-
clusion effects in the QR code method through 
enhanced camera positioning and environmental 
control. Similarly, for the numerical labelling meth-
od, even though it achieved high detection rates 
overall, their visibility may also be limited in rear-
view camera angles, especially during feeding sce-
narios when cows lean forward. These limitations 
highlight the importance of camera placement and 
system calibration in practical deployments.

The dataset used for training was also confined 
to small and medium herd sizes, which may not 
capture the complexities present in larger herds. 
Future research should aim to evaluate these meth-
ods in larger and more diverse herds to assess their 
scalability and robustness. In addition, future work 
could explore the integration of such identification 
systems into farm-level automation platforms, en-
abling real-time monitoring, alert generation, and 
decision support. Practical deployment may also 
benefit from developing adaptive models that can 
accommodate changes in herd composition and 
lighting conditions without requiring full retrain-
ing. These directions would support the practical 
viability and long-term sustainability of computer 
vision-based identification in modern livestock 
systems.

In addition to technical performance, the prac-
tical implementation of  these methods varies 
in terms of cost, labour, and maintenance. Body 
texture recognition is non-invasive and does not 
require the physical handling of animals but de-
mands high-quality imaging systems and frequent 
retraining when the herd composition changes, 
which can increase computational and data an-
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notation costs. QR code collars are relatively low-
cost and easy to deploy, but they require a regular 
inspection to ensure the codes remain visible and 
properly positioned on the animal. Numerical la-
belling using livestock-safe markers involves mini-
mal equipment cost and is quick to apply, though 
reapplication may be needed after some time due 
to fading. From a labour perspective, all methods 
require initial setup and occasional maintenance, 
but numerical labelling offers the most streamlined 
integration into existing barn routines. These prac-
tical factors should be considered alongside the 
model performance when selecting a method for 
real-world deployment.
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