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Abstract: Feed efficiency (FE) is one of the most essential traits in dairy cattle, primarily due to the high cost 
of feed, which constitutes a significant portion of dairy herd expenses. Unfortunately, assessing FE in individual 
cows requires precise measurement of feed consumption, a labour-intensive and expensive process that is impracti-
cal for group-fed cows on production farms. Efforts have been made to predict FE or, more precisely, dry matter 
intake (DMI), using predictors such as a body weight (BW), milk yield (MY), and milk composition. Recently, Fou-
rier transform mid-infrared (FT-MIR) spectroscopy has been proposed as a tool to enhance the accuracy of DMI 
prediction. This paper reviews the application of FT-MIR milk spectroscopy for deriving FE phenotype in dairy 
cattle. FT-MIR is a reliable and widely used method for routine analysis of milk components. In FE phenotyping, 
predictive equations often incorporate FT-MIR alongside other traits such as BW, MY, milk composition, herd, 
breed, days in milk, and pregnancy. The most commonly used mathematical approaches are partial least squares 
(PLS) regression and artificial neural networks (ANN). Prediction accuracy varies across studies, depending on the 
mathematical method and model employed. Predictions based solely on FT-MIR data have demonstrated moderate 
accuracy (coefficient of determination), ranging from 0.19 to 0.40. However, integrating all data sources including 
MY, milk composition, FT-MIR, and near-infrared reflectance spectroscopy (NIR) is crucial and results in higher 
accuracy, with reported values ranging from 0.03 to 0.81. 
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Feed efficiency (FE) in dairy cows is crucial for 
dairy farm productivity. The importance of FE lies 
in the cost of feed, which constitutes a significant 
portion of dairy herd expenses. A major obstacle 
to the direct inclusion of feed efficiency in dairy 

breeding programmes is the inability to regularly 
and inexpensively acquire information on  indi-
vidual feed consumption on commercial farms. 
Individual measurement of feed consumption us-
ing feed troughs is expensive and labour-intensive 
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and therefore, is only used under experimental 
conditions. Dairy cows’ milk yield (MY), milk 
composition, body weight (BW) and information 
on  lactation stage and reproductive status can 
be used to predict dry-matter intake (DMI). These 
traits, along with FE predictive ability, also include 
Fourier-transform mid-infrared spectroscopy 
(FT-MIR), a simple and accurate method widely 
used to routinely determine the content of milk 
components, such as  fat and protein (Soyeurt 
2011). These measurements are subsequently ap-
plied to evaluate milk economically or are used 
in dairy cattle breeding. FT-MIR uses light from 
the mid-infrared region to scan milk samples and 
identify the presence of specific chemical bonds. 
The results are presented as an absorption profile, 
which consists of absorbance values for individual 
infrared light wavenumbers across the mid-infrared 
region. Traits and phenotypes, such as fat, pro-
tein, or lactose content, are predicted as a function 
of the individual FT-MIR wavenumber absorbances 
(Tiplady 2020). The predicted traits are not lim-
ited to phenotypes linked to milk composition and 
traits, for example, the composition of milk fatty ac-
ids (Soyeurt et al. 2011), milk protein composition 
(Rutten et al. 2011), milk coagulation (Dal Zotto 
et al. 2008), milk acidity (De Marchi et al. 2009) 
or cheese yield, curd nutrient recovery (Cecchinato 
et al. 2015) and ketone bodies (Klein et al. 2012). 
It turns out that other cattle phenotypes can also 
be determined based on FT-MIR milk analysis. 
Currently, it is energy status (Ho et al. 2019), preg-
nancy status (Toledo-Alvarado et al. 2018), feed and 
DMI (Shetty et al. 2017), and methane emissions 
(De Haas et al. 2011). 

The relationship between FT-MIR milk absorp-
tion profiles and numerous traits or phenotypes 
is based on molecular and biological mechanisms 
underlying phenotypic trait expression and is linked 
to the animal genome (Tiplady 2021). These rela-
tively inexpensively obtained phenotypes could play 
a crucial role in the genetic and genomic selection 
of dairy cattle. De Haas et al. (2011) and Wall et al. 
(2010) reported that FT-MIR milk-predicted traits 
could be as effective in genetic or genomic selection 
as directly measured traits, provided there is a close 
relationship between the actual phenotype and its 
prediction, and the traits are predicted to a greater 
extent. Interest is growing increasingly in analysing 
individual FT-MIR wavenumbers and in utilising 
FT-MIR data to predict other novel traits relevant 

to the industry. Furthermore, spectra are already 
available as a by-product of routine dairy cattle 
milk recording and testing (Tiplady 2020). 

Here, we review the use of FT-MIR to acquire 
FE phenotype in dairy cattle. We discuss the genet-
ics of FT-MIR data and its genetic relationship to FE 
in cattle. We also review the studies on FT-MIR-
predicted FE, with an emphasis on current research.

What is Fourier transform mid-infrared 
spectroscopy of milk?

The FT-MIR of milk samples produces an absorp-
tion profile, which consists of absorbance values 
for individual infrared light wavenumbers across 
the mid-infrared region. According to Bittante and 
Cecchinato (2013), the resulting milk spectrosco-
py data can be divided into several regions based 
on wavelengths: the short-wavelength infrared re-
gion (SWIR) from 5 011 to 3 673 cm−1; the transition 
region between SWIR and the mid-wavelength infra-
red region (SWIR-MWIR) from 3 669 to 3 052 cm−1; 
FT-MIR, divided into two mid-infrared regions: 
MWIR1, from 3 048 to 1 701 cm−1, and MWIR2, from 
1 698 to 1 586 cm−1. The transition region between 
MWIR and the long-wavelength infrared (LWIR) 
ranges from 1 582 to 925 cm−1 (MWIR-LWIR).

The MIR spectrum wave points show different 
variations between animals, as shown in Figure 1 
by Dorea et al. (2018). They used only 361 points 
from 1 060, with a coefficient of variation greater 
than 1%.

The heritability of wavelengths in the mid-in-
frared region of the spectrum was confirmed. For 
milk spectral data, Rovere et al. (2019) found that 
the MWIR (3 000–2 500 cm−1) and MWIR-LWIR 
(1 500–925 cm−1) regions primarily include waves 
with moderately high (≥ 0.4) heritabilities. Rovere 
et al. (2019) explained this by associating specific 
wavenumbers with milk metabolites and compo-
nents, such as protein and fat. Additionally, most 
of the heritability peaks were found in regions as-
sociated with milk components as well as regions 
linked to reproductive outcomes, such as concep-
tion. The wavelengths with very low heritability 
showed high absorbance of water molecules. Rovere 
et al. (2019) also found changes in heritabilities 
during lactation and between parities. They ex-
plained that milk composition changes are due 
to molecular-biological processes in the cow’s body, 
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such as pregnancy and milk production. These 
processes have a genetic basis; thus, the genetic 
background is involved in changes in milk and, sub-
sequently, in changes in spectral absorbance values, 
as those changes are detected in milk samples.

The wavebands obtained in milk spectral analysis 
are related to FE in cattle due to the various milk 
components. These components are influenced 
by the animal’s feed ration and metabolism, as dem-
onstrated in the studies by Shetty et al. (2017) and 

McParland et al. (2014). To predict DMI and RFI, 
Shetty et al. (2017) found that the key spectral 
wave numbers include peaks for fat, protein, and 
lactose. As shown in Table 1, Shetty et al. (2017) 
explained the relationship between several wave-
numbers of FT-MIR spectra and specific nutrients 
and chemical bonds in the assessment of dry matter 
intake. Fat A is a group of milk lipids with strong 
absorbance bands due to the carbonyl (C=O) group 
in the region between ~1 700 and 1 800 cm−1, while 
Fat B exhibits absorbance bands due to the C–H 
group in the region from ~2 800 to 3 000 cm−1 (Inon 
et al. 2004). The ability of FT-MIR spectral data 
to predict feed or energy intake can be explained 
by the fact that the fat-to-protein ratio or milk fatty 
acid composition is associated with energy balance 
(McParland et al. 2014). The milk composition de-
tected by FT-MIR data must depend not only on the 
feed composition but also on the processing and 
use of the feed by the animal.

Feed efficiency in cattle: A brief 
introduction to the topic

FE was mentioned among the “new traits” in-
troduced into cattle breeding, alongside milk 
fatty acid content (Bastin et al. 2011), hoof health 
(Malchiodi et  al. 2017), methane emissions 
(De Haas et al. 2011) and the use of data from auto-
mated milking systems (Jacobs and Siegford 2012). 
Along with the genetic evaluation of health traits 
in Scandinavian countries (Heringstad et al. 2000), 
these are considered milestones in the selection 
of dairy cattle for sustainable agriculture, focusing 
on breeding healthy and fertile animals with high 
productivity and the production of healthy food 
(Miglior et al. 2017).
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Figure 1. Coefficients of variation (CV) of the light 
absorbance (vertical axis) for the wavenumbers (hori-
zontal axis).  
The CV of absorbance for individual wavenumbers (cm−1) 
(number of wavenumbers = 1 060) of individual animal milk 
samples (number of samples = 1 279) obtained through 
milk Fourier transform mid-infrared spectroscopy; the 
colour scale of the CV, ranging from light blue (lower CV) 
to dark red (higher CV), represents increasing CV values; 
of the 1 060 wavenumbers, only 361 had a CV greater than 
1% across animals
Source: Dorea et al. (2018)

Table 1. Important spectral wavenumbers selected by recursive weighted partial least squares regression for dry 
matter prediction in early lactation, along with the corresponding chemical functional groups, milk components, 
and feed and nutrient information

Wavenumber 
(cm−1)

Milk  
components Nutrients Feed Bond Functional  

group 

3 003, 2 976 fat B fatty acids, acetic, butyric fermentable fibre C–H alkyl chain
1 789 fat A fatty acids, acetic, butyric fermentable fibre C=O carbonyl group 
1 249 protein (amide III) amino acids crude protein C–N aromatic amines
1 079, 987, 968, 
948, 944 Lactose propionic (glucose) sugar starch O–H hydroxyl group

Source: adapted from Shetty et al. (2017)
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VandeHaar et al. (2016) stated that FE is a com-
plex trait with no simple or singular definition. 
It can be defined at the animal level, the farm level, 
or even on a global scale. For animals, FE is often 
expressed per unit of production. The efficiency 
of nutrient conversion from feed can be understood 
as the proportion of feed energy or dry matter cap-
tured in production. According to VandeHaar et al. 
(2016), the fundamental concept of FE is derived 
from partitioning the gross (GE) energy of feed. 
GE is divided into components, including energy 
lost through faeces, gas, urine, and other waste, 
as well as heat generated during the digestion and 
metabolism of feed. The remaining portion, known 
as net energy of feed (NE), is used for maintenance 
and is partly converted into dairy or meat products. 

As expected, the importance of FE lies in the cost 
of feed, which constitutes a large portion of the 
expenses for dairy herds. Over the past 100 years, 
FE has increased in proportion to cattle milk pro-
duction. FE enhancement through increased milk 
yield has been achieved through breeding, im-
proved nutrition, and better management. There 
has been a two-fold increase in FE in the US, and 
importantly, the share of FE captured in milk has 
significantly increased compared to  the share 
allocated to  a  dairy cow’s maintenance needs 
(VandeHaar et al. 2016). For further improvement 
of FE, breeding should focus directly on FE rather 
than indirectly on dairy production, as the poten-
tial for increasing FE through increasing milk pro-
ductivity has already been exhausted (VandeHaar 
et al. 2016). It means selecting the FE trait, which 
is defined differently from the gross FE (GFE) traits 
that have strong positive genetic correlations with 
milk yield (Spurlock et al. 2012).

GFE is one of the fundamental definitions of FE 
in dairy cattle, expressed as the ratio of milk output 
to feed input (Connor 2015). Milk yield is typically 
expressed as solids-corrected or energy-corrected 
milk yield. Feed input is measured either as DMI 
or energy intake. As Connor (2015) stated, the herit-
ability of GEF is moderate, ranging from 0.14 to 0.37.

Another term used to  assess and define the 
FE of dairy herds is income over feed cost (IOFC) 
or return over feed (ROF) (Connor 2015). IOFC 
derives FE directly from profitability. Generally, 
it is expressed as the difference between the total 
revenue from milk sales and the feed costs asso-
ciated with its production. It is heavily influenced 
by feed costs and milk prices, both of which fluctuate 

considerably. Calculating IOFC can be challenging, 
especially for individual cows, due to the difficulty 
in obtaining accurate data on individual cow feed 
intakes. As one of the measures of FE, residual feed 
intake (RFI) was proposed by Koch et al. (1963). RFI 
represents the difference between the actual feed 
or energy intake and predicted feed or energy intake 
for the animal. RFI is independent of body size and 
performance level. RFI reflects hereditary variation 
in key metabolic processes and enables the capture 
of differences in FE between animals (Connor 2015). 
How do we define FE as RFI? Suppose FE is expressed 
as DMI. In that case, RFI is calculated as a residual 
from a regression model where DMI is the depend-
ent variable, and milk production, weight (mainte-
nance ration), and other feed energy requirements 
of the animal, such as the stage of pregnancy, are 
represented as explanatory variables in the model 
(Pryce et al. 2014; Negussie et al. 2019). In short, 
RFI is the difference between the actual DMI and 
the predicted DMI, which is estimated using the 
explanatory variables (Connor 2015). 

However, the first step in the selection process for 
improving FE is defining and measuring the FE phe-
notype, specifically individual feed consumption, 
expressed as DMI. Assessing FE in an individual 
cow involves measuring feed consumption, which 
requires individual feed boxes equipped with elec-
tronic cow identification and the recording of feed 
weight. This labour-intensive and costly approach 
is not feasible for group feeding of cows on pro-
duction farms (Negussie et al. 2019). Expensive 
experiments to determine feed consumption are 
typically limited to a few animals. Note that the FE 
obtained from a few animals must be used for selec-
tion across the entire population.

The next steps in the selection process involve 
estimating genetic parameters of FE phenotypes, 
including heritability and correlations with other 
selection index traits, before applying genomic se-
lection and selection indexes (Pryce et al. 2014; 
Rovere et al. 2019). 

The heritability of RFI is intermediate (0.18–0.40) 
and varies throughout lactation (0.18 in the middle 
of lactation) (Negussie et al. 2019). The heritabil-
ity of FE traits, combined with the use of genomic 
methods, enables the prediction of breeding values 
(Pryce et al. 2014). 

For a direct approach to estimating breeding val-
ues (EBV) for RFI based on the measured pheno-
type, we refer to the method described by Lidauer 
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et al. (2023), where breeding values for RFI and the 
partial regression coefficients for the energy sink 
traits are estimated simultaneously:

DMI HYS c ECM
M MBW L BWloss

BW

hijkl i hl jl E jk

jk jk

G

� � � � �
� � � � �
� �

� �
� �
� ggain p a ejk k k hijk� � �

		

(1)

 

where:
DMIhijk 	      – the DMI observation for cow k, recorded 

in her contemporary group i and lactation 
week j;

HYSi 	   	     – the fixed effect of herd × year × season 
contemporary group i;

chl φjl		           – the fixed regression function on lactation 
week j nested within herd h; φj is a vector 
containing the covariates of a third-order 
Legendre polynomial plus the exponential 
term e–0.05j for lactation week j;

γE, γM, γL, γG – partial regression coefficients on a cow 
k’s observations in her lactation week j for 
energy-corrected milk (ECM), maintain 
1 kg0.75 of metabolic body weight (MBW, 
MBW = BW0.75), BW loss and BW gain, 
respectively;

pk 		     – the random permanent environmental 
effect of cow k [p ~ N(0, Iσ2

p), where I – 
 an identity matrix and σ2

p is the perma-
nent environmental variance];

ak 		        – the random additive genetic effect of cow 
k [a ~ N(0, Aσ2

a), where A is the numer-
ator relationship matrix, and σ2

a is  the 
additive genetic variance];

ehijk 		       – the random residual effect [e ~ N(0, Iσ2
e) 

where I is an identity matrix and σ2
e is the 

residual variance.

The EBV for RFI of cow k is the difference be-
tween the estimate of the additive genetic effect for 
cow k, ak, and the average of all a estimates where 
a negative estimate of a is equal to  the amount 
of feed saved.

In Australia, Pryce et al. (2015) used two-step 
genomic methods to predict the genomic breeding 
values (GEBVs) for feed saved. The feed saved trait 
combines GEBV for RFI and the maintenance feed 
requirement based on body weight (BW). RFI was 
available only for genotyped animals, while BW 
was known for all animals. The GEBV for RFI was 
predicted using a multi-trait model with 2 036 ani-
mals as the genomic reference population: Australian 

calf RFI, Australian lactation cows’ RFI, and UK 
and Dutch lactation cows’ RFI, all of which had RFI 
phenotypes. The RFI breeding value for 4 106 geno-
typed sires without RFI phenotypes was calculated 
based on the single nucleotide polymorphism effects 
of genomic BLUP. The sires had BW breeding values. 
Notably, the feed saved GEBV was calculated using 
only the BW information for non-genotyped animals.

Negussie et al. (2019) analysed several scenarios 
of daily DMI recording to determine which scenario 
is the most advantageous in terms of RFI GEBV ac-
curacy and, at the same time, is not excessively de-
manding for DMI measurement. They concluded 
that a higher number of cows per sire is beneficial 
for achieving higher RFI GEBV accuracy. It is clear 
that RFI GEBV accuracy decreased with increas-
ing intervals between DMI measurements, but this 
can be compensated for by increasing the number 
of monitored cows per bull. What is essential is that 
the total number of DMI measurements decreases; 
therefore, the farm’s costs for this measurement also 
decline. Negussie et al. (2019) stressed that the re-
cording of DMI should be limited to specific stages 
of lactation because DMI in different stages of lacta-
tion is only partly related to other stages. Therefore, 
using measurements throughout the entire lacta-
tion leads to lower RFI GEBV accuracy. Similarly, 
focusing only on a specific part of lactation limits 
the number of cows monitored and also decreases 
reliability. This can be compensated for by repeating 
the recording for more groups of cows. 

Lidauer et al. (2023) also suggested a new FE trait, 
a new RFI-derived metric – regression on expect-
ed feed intake (ReFI). This metric is based on re-
gressing DMI on expected DMI using a random 
regression linear animal model, which calculates 
expected DMI using energy requirement formula-
tions. The crucial difference from RFI is that this 
new metric is independent of DMI. Using ReFI for 
genetic evaluation instead of RFI resulted in the 
reranking of cows and the selection of the most 
influential animals. All this is a result of a better-
modelled feed intake in the model. The ReFI model 
(Lidauer et al. 2023):

DMI eDMI eDMI
eDMI

ijk i jk k jk k

jk ijk

� � � � � �
� �
� � �

�
	 (2)

where: 
DMIijk – a DMI observation for cow k, recorded in her 

contemporary group i and lactation week j;



6

Review	 Czech Journal of Animal Science, 70, 2025 (1): 1–16

https://doi.org/10.17221/165/2024-CJAS

βi 	 – a  fixed regression coefficient for the herd × 
year × season contemporary group i; 

ψk	 – a  random regression coefficient for the per-
manent environmental effect of  cow k [ψ~ 
N(0, Iσ2

ψ), where I is an identity matrix and σ2
ψ 

is the variance of the permanent environmental 
regression coefficients];

αk 	 – a random regression coefficient for the additive 
genetic effect of cow k [α~N(0, Aσ2

α), where 
A is the numerator relationship matrix and σ2

α 

is the variance of the additive genetic regression 
coefficients]; 

εijk 	 – the random residual effect ε ~ N(0, Iσ2
ε), where 

I is an identity matrix;  Iσ2
ε is the residual vari-

ance, and eDMIjk is the expected DMI (eDMI), 
for cow k in lactation week j.

The eDMI is calculated using the Equation (3). 

eDMI
ER
ED

jk=
			   (3)

where:
ERjk – the energy requirement for cow k in  lactation 

week j;
ED     – the average energy density, calculated as the aver-

age of all ERjk values divided by the average of all 
DMIjk observations.

In their study, Lidauer et al. (2023) calculated ERjk 
using coefficients from several dairy cattle nutri-
tion studies, applying the following equation:

ER ECM MBW
BWloss BWgain

jk jk jk

jk jk

� � � � � �
� � �

4 81 0 603 27 6
34 8

. . .
.

(4)

Where the regression coefficients represent 
the expected amount of MJ ME needed to pro-
duce 1 kg of energy-corrected milk (ECM), main-
tain 1 kg0.75 of metabolic body weight (MBW), the 
amount of ME made available through the mo-
bilisation of 1 kg of body tissue, i.e. BW loss, and 
the ME required to gain 1 kg of BW, respectively. 
Note that BW loss and BW gain have values ≥ 0. 
The applied regression coefficients in (Equation 4) 
are averages of estimates based on various energy-
feeding systems reported by (Agnew et al. 2003).

The EBV for ReFI for cow k is the difference be-
tween the estimate of the additive genetic effect 
of cow k, αk (Equation 2) and the fixed regression 
coefficient estimate βi (Equation 2), where a nega-
tive value equals the percentage of feed saved. 

In conclusion, this section states that the essen-
tial prerequisite for predicting EBVs for FE traits 
is the knowledge of individual DMI for some ani-
mals in the population.

Mid-infrared spectroscopy in FE 
phenotyping

Differentiating cows based on FE is not compu-
tationally complex. The main obstacle lies in data 
acquisition. If feed consumption measurements 
were available for every dairy cow, the FE calcula-
tions would be carried out routinely. Alternatively, 
FE could be predicted during the monthly perfor-
mance check. The resulting FE phenotype would 
be entered as a dependent variable in the prediction 
of EBVs and GEBVs. Some information about the 
animals and their phenotypes, such as milk yield, 
lactation stage, age, or origin, is collected regularly. 
Other phenotypes are more challenging to mea-
sure, such as the live weight of animals; they can 
be estimated using conversion coefficients from 
body dimensions such as chest girth (Veerkamp and 
Brotherstone 1997). Obtaining feed consumption 
is the most costly and labour-intensive. As men-
tioned, suitable predictors are being sought for the 
FE phenotype to avoid the need for direct measure-
ment of individual feed consumption. 

Therefore, we can conclude from the previous 
text that it is necessary to conduct an experiment 
in which data on animal phenotype such as feed 
consumption, BW data, production, parity and 
days of lactation, as well as proposed predictors 
like FT-MIR, are collected. The next step involves 
subjecting the collected data on feed consumption 
and predictor traits to statistical analysis to de-
rive a prediction equation. The derived predic-
tion equation includes estimates of  regression 
coefficients for specific predictor traits. What 
is crucial is that these predictors should be much 
easier to measure and obtain than feed consump-
tion, preferably for large populations. This is par-
ticularly true for spectrometric data routinely 
measured in dairy cattle milk recording. Figure 2 
illustrates the process from the DMI acquisition 
experiment to the prediction of FE breeding val-
ues for cows, without direct measurement of DMI. 
The process described in Figure 2 can be applied 
to other feed efficiency indicators, such as those 
based on energy intake.
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In FE phenotyping, the use of mid-infrared spec-
troscopy defines the FE phenotype in dairy cows 
as inexpensive, though with limited accuracy. FE can 
be predicted based on other predictors, such as a 
cow’s weight (BW), milk production (MY), and milk 
composition (McParland et al. 2014; Shetty et al. 
2017; Dorea et al. 2018). However, it is proposed 
that FT-MIR data derived from milk composition 
can be used to increase the accuracy of FE predic-
tion. Using a predictor trait, such as phenotypes 
derived from FT-MIR spectra, may provide a cost-
effective indirect measurement of FE, eliminating 
the need for expensive feed intake measurements 
for many cows.

Data required for the development 
of a prediction model 

Individual feed consumption. To  determine 
FE in dairy cows, individual feed consumption dur-
ing lactation must be measured. Then, the DMI 
or  other indicators, such as  energy needs, are 
derived from the obtained individual feed con-
sumption. Obtaining individual feed consump-
tion requires measuring feed intake using feed 
troughs. Any other approaches for measuring 
feed consumption, such as using camera systems, 
are sophisticated estimates. Expensive monitor-
ing of individual feed consumption results in a low 
number of monitored animals. In the case of dairy 
cows, the monitored animals should be in approxi-
mately the same stage of lactation, have a compara-
ble parity, and belong to the same breed. However, 
due to the lack of data, information obtained from 

different trials and breeds is often combined (Dorea 
et al. 2018; Wallen et al. 2018). 

Individual predictive traits, besides FT-MIR 
waves. Individual predictive traits or predictors 
are characteristics of animals that can be used 
to predict feed consumption and energy expendi-
ture. They are divided to traits describing body 
size or condition, such as BW and BCS, and those 
related to production, such as MY, fat, protein, and 
lactose content. Besides this, information on the 
stage of lactation and other factors that become 
part of model equations is crucial. This situation 
arises when the dependent variable of the equation, 
i.e., the evaluated phenotype, is measured in differ-
ent environments, such as herds. Shadpour et al. 
(2022) addressed this situation by including several 
fixed effects, such as country, season of calving, 
and lactation number, in the model equation. They 
obtained the DMI of cows from experiments con-
ducted in Canada, the United States, and Denmark. 
This fact had to be considered in the formation 
of the prediction equations. Interestingly, these 
sets of effects contributed little to the prediction 
accuracy of the final models (Shadpour et al. 2022). 

The BW provides essential information. However, 
BW data is not readily available on every farm. 
Therefore, different types of models with varying 
parameters would offer choices and enable users 
to predict DMI with reasonable accuracy. Shetty 
et al. (2017) stated that BW had a crucial influence 
on the model’s predictive ability. As Shadpour et al. 
(2022) point out, BW can be estimated using, for 
example, chest width (Veerkamp and Brotherstone 
1997). BW is often used as MBW (Dorea et al. 2018; 
Shadpour et al. 2022).

 

·Dry matter intake
·Milk production
·Milk composition
·Body weight
·Milk spectral waves

·Mathematical methods
·PLS or ANN
·Training
·Validation

·Prediction equation
·Milk production
·Milk composition
·Body weight
·Milk spectral waves

·Predicted DM intake as 
 phenotype
·GBULP prediction methods
·FE EBV predicted also for 
cows without direct

 measurement of DM intake

Figure 2. Prediction of breeding values (EBV) for feed efficiency (FE) with milk spectral waves (FT-MIR) included 
in the prediction of dry matter intake
ANN = artificial neural networks; PLS = partial least squares

Figure 2

Feed
efficiency
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Milk yield provides useful information on dairy 
cows’ energy needs. It has proven to be one of the 
primary predictive characteristics for determin-
ing FE in dairy cows. To clarify, daily milk yield 
(MY) refers to the milk production on the control 
day, linked to the milk sample for FT-MIR analysis. 
McParland et al. (2014) found that MY, as a predic-
tor variable, improved the accuracy of RFI across 
lactation but failed to improve the accuracy of pre-
dicting effective energy intake (EEI) when added 
to FT-MIR data.

Milk fat, protein, and lactose content are other 
milk characteristics linked to energy needs and, 
therefore, to FE. The key point is that milk com-
position (McDermott et al. 2016) and fatty acids 
(Soyeurt et al. 2011) are closely related to feed and 
are regularly assessed by FT-MIR. 

Illustrative experiments using FT-MIR data 
to predict FE traits

The list of studies on the prediction of FE based 
on FT-MIR shows that this topic is being continu-
ously investigated to expand on previously estab-
lished knowledge. For additional information, see the 
supplemental table. Readers interested in this area 
of the research are provided with key publications.

McParland et al. (2014) analysed records for en-
ergy intake, RFI, and milk MIR spectral data from 
an Irish research herd across 36 test days, cover-
ing 535 lactations in 378 cows. They employed 
FT-MIR data from a.m. milk samples or/and p.m. 
samples or/and MY for prediction. All milk sam-
ples were analysed using the same MIR spectrom-
eter (Foss MilkoScan FT6000; Foss Electric A/S, 
Hillerød, Denmark). 

Shetty et  al. (2017) used milk yield and con-
tent data, FT-MIR spectrometric data from 
Milkoscan  FT+, and feed consumption to  pre-
dict DMI or RFI in Danish Holstein and Danish 
Jersey cows. Milk yield and feed consumption 
were measured daily, and milk samples were col-
lected 2 to 6 times a week. The FT-MIR spectro-
metric data were analysed in milk samples using 
Milkoscan FT+, corresponding to MY, fat, protein, 
and lactose contents. 

Wallen et  al. (2018) also used the MilkoScan 
FT6000 MIR spectrometer. They predicted DMI and 
net energy intake (NEI) in Norwegian Red cows. 
In addition to spectrometric data, they employed 

a predictive model of milk composition. The high-
est predictive accuracy of models for both DMI and 
NEI was achieved when MY, BW, and FT-MIR data 
were included in the prediction equations.

Dorea et al. (2018) compared two mathemati-
cal methods: PLS and ANN. ANN was combined 
with a Bayesian network (BN) to predict DMI us-
ing FT-MIR variables such as MY, BW, and milk 
composition. They concluded that machine learn-
ing is the appropriate course of action when used. 
The ANN benefiting from milk spectra, including 
in the procedure, but not PLS, supports ANN as a 
superior approach for finding helpful information 
from milk.

Lahart et al. (2019) predicted the DMI of dairy 
cows using milk FT-MIR combined with faeces 
NIR. They compared those prediction equations 
with a benchmark equation based on MY, fat per-
centage, protein percentage, BW, stage of lactation 
(SOL), and parity. Milk samples were analysed us-
ing a Foss Milkoscan FT6000 spectrometer.

Shadpour et al. (2022) predicted DMI using milk 
FT-MIR data from three experiments conducted 
in different countries, employing linear and non-
linear ANN architectures and PLS regression. 
Weekly milk samples were analysed using a Foss 
Milkoscan FT6000 spectrometer to predict DMI 
and (Equation 3) validate the robustness of the de-
veloped prediction models.

Ouweltjes et al. (2022) examined the potential 
of the FT-MIR-predicted FE phenotype for inclu-
sion in the selection index. They used individual 
feed intake data from feeding trials at the Dairy 
Campus research farm (Lelystad, the Netherlands) 
to develop prediction equations. Milk samples were 
analysed using MilkoScan FT6000 spectrometers. 
On  676  commercial farms, they predicted the 
FE phenotype for 78 488 Holstein cows and sub-
sequently calculated EBVs for FE traits. They found 
low correlations between sires’ EBVs for predicted 
DMI and official DMI estimates. However, higher 
correlations were observed between sires’ EBVs for 
predicted DMI and official EBVs for milk produc-
tion (0.33), longevity (0.26), and fertility (−0.27).

Salleh et al. (2023) compared three approaches 
(PLS, SVM, and RF regression) for their ability 
to predict DMI in Swedish dairy cattle using milk 
MIRS data. They found that using the milk MIRS 
data to predict DMI provided low-to-moderate 
prediction accuracy r2 = 0.07–0.40. Data were 
analysed separately for 3–180 days in milk (DIM), 
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early lactation (3–30 DIM), and mid-lactation 
(30–180 DIM). They preferred PLS over SVM and 
RF regression. Above all, the mentioned studies 
demonstrate a progression in  the mathematical 
methods used to develop prediction equations, with 
increasingly complex mathematical approaches be-
ing applied over time (McParland et al. 2014; Dorea 
et al. 2018; Shadpour et al. 2022). Nevertheless, the 
original PLS method retains its position as a reli-
able approach for developing prediction equations 
(Salleh et  al. 2023). In  individual studies, data 
on feed consumption are either obtained through 
their experiments (Shetty et al. 2017; Ouweltjes 
et al. 2022), or evaluated from several previously 
conducted experiments (Dorea et al. 2018; Wallen 
et al. 2018). One study has progressed from phe-
notype prediction to breeding value estimation 
(Ouweltjes et al. 2022).

Development of a predictive equation of FE 
trait using FT-MIR data 

The predicted traits. The primary focus is the 
prediction of FE traits such as RFI, DMI, NEI, ef-
fective energy intake (EEI), and energy balance 
(EB). Additionally, changes in  body condition 
score (BCS) can also be  predicted (McParland 
et al. 2014). Shetty et al. (2017) utilised DMI and 
RFI as FE traits. RFI was expressed as the residual 
from a linear regression model, where DMI was 
regressed on ECM and weekly MBW. McParland 
et al. (2014) calculated RFI as the difference be-
tween effective energy intake (EEI) based on the 
equation by Coffey et al. (2001) we repeatedly mea-
sured food intake, live weight, milk yield and condi-
tion score of Holstein cattle in their first lactation. 
They were given either a high concentrate or low 
concentrate diet and were either selected or con-
trol animals for genetic merit for kg milk fat plus 
milk protein. Orthogonal polynomials were used 
to model each trait over time and random regres-
sion techniques allowed curves to vary between 
animals at both the genetic and the permanent en-
vironmental levels. Breeding values for bulls were 
calculated for each trait for each day of lactation. 
Estimates of genetic merit for energy balance were 
calculated from combined breeding values for ei-
ther (1, and energy demands calculated according 
to milk, fat, protein and lactose yields, BCS, and 
EBW and their changes. These calculations were 

performed for each test-day and categorised into 
three stages of lactation: 5–60 DIM, 60–180 DIM, 
and 180–300 DIM. Wallen et al. (2018) developed 
predictive equations for estimating DMI and net 
energy intake (NEI) using MY, fat, protein, lactose 
content, and BW. Rachah et al. (2020) predicted 
EB, DMI, and EEI in lactating dairy cows × by in-
corporating MY and concentrate intake, in addi-
tion to FT-MIR data, as predictor traits, into their 
equations. Shadpour et al. (2022) utilised weekly 
averages of DMI to develop a prediction equation, 
which was then applied to estimate DMI for ani-
mals without direct DMI measurements. 

Efforts to accurately predict FE indicators often 
lead researchers to examine the issue from various 
angles in their experiments. They analyse several 
traits derived from data on feed intake and other 
known indicators related to  the animals being 
studied. One key dilemma they face is whether 
to predict DMI or RFI or to explore the possibili-
ties of predicting indicators that describe energy 
consumption. This pursuit also enables them to un-
derstand the relationships between different indica-
tors and the changes that occur during lactation.

Preprocessing of FT-MIR data. Mathematical pro-
cedures can be applied to adjust raw spectral data 
before its use in developing prediction equations. 
This ensures that the adjusted spectral data is thor-
oughly cleansed of unwanted variance. Shetty et al. 
(2017) employed a method to enhance the accu-
racy of weekly averaged FT-IR data by applying 
Savitzky-Golay first derivatives (Savitzky and Golay 
1964). They used a filter width of 7, a polynomi-
al order of 2, and mean centring to achieve this. 
A similar procedure was applied by Rachah et al. 
(2020). First-derivative spectra pretreatments are 
commonly used to enhance resolution and sharp-
en absorption bands in spectral samples (Savitzky 
and Golay 1964). Wallen et al. (2018) applied the 
Savitzky-Golay method to smooth the MIR spec-
tral data using different polynomial degrees and 
window sizes. Ouweltjes et al. (2022) smoothed 
323  selected informative spectral points with 
a polynomial order of 2 and a filter width of 7, simi-
lar to the procedures used by Shetty et al. (2017). 
Lahart et al. (2019) used rolling averages over seg-
ments of 5 data points in length, i.e. boxcar smooth-
ing. First, the spectral data were transformed from 
transmittance to  linear absorbance through log 
transformation of the reciprocal wavelength val-
ues (Soyeurt et al. 2011). Pre-processing FT-MIR 
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data helps researchers obtain more reliable results 
when analysing FT-IR data. In contrast, Shi et al. 
(2023) did not confirm that preprocessing MIR 
data would increase prediction accuracy for the 
traits they studied, including DMI and nitrogen 
use efficiency (NUE), defined as the ratio of total 
N output in milk to total N intake from feed. This 
may have been due to the small sample size of cows 
(86) they used. 

Mathematical methods. The process of deriving 
prediction equations involves calibration (training) 
and validation. The calibration output is a predic-
tion equation, the structure of which depends on the 
model’s ability to explain the dependent variable. 

Many studies for predicting FE traits using 
FT-MIR employ PLS regression (McParland et al. 
2014; Shetty et al. 2017; Lahart et al. 2019; Rachah 
et al. 2020; Ouweltjes et al. 2022). In this method, 
predictors are condensed into a smaller set of un-
correlated orthogonal components called latent 
variables, and a  least squares regression is per-
formed on the latent variables instead of the origi-
nal data. PLS regression performs well when the 
number of predictors exceeds the number of ob-
servations and when strong collinearity exists be-
tween them, as is the case with spectroscopic data. 
The PLS regression model is currently the most 
commonly used technique for milk MIR spectra 
(Grelet et al. 2021).

Dorea et al. (2018) employed artificial neural net-
works (ANN) and wavelength selection using BN 
to predict DMI. They found that ANN improved 
prediction accuracy, particularly when BN was used 
to select more informative wavelengths. Similarly, 
Shadpour et al. (2022) employed ANN with positive 
results. ANN is a complex mathematical procedure 
that, unlike PLS, is not as straightforward to use, 
but it produces highly satisfying outcomes. The 
basic principle of ANN is a self-learning process. 
Shadpour et al. (2022) used a 2-layer feed-forward 
perceptron, also known as a single hidden layer 
feed-forward neural network, to train DMI predic-
tion equations, as shown in Figure 3. This is a com-
monly applied form of ANN for regression. The 
ANN training involves an  iterative process. 
The ANN weights and biases for the training step 
are estimated, and then the prediction errors for the 
validation set are calculated using the parameters 
estimated during training. The estimated param-
eters are used to predict the parameters with the 
lowest average prediction errors during the itera-

tion process. Levenberg-Marquardt (LM), scaled 
conjugate gradient (SCG), and Bayesian regularisa-
tion (BR) were used as training algorithms in the 
study by Shadpour et al. (2022).

The BLUP method was used to  predict DMI 
in Norwegian Red dairy cows (Wallen et al. 2018), 
but the prediction accuracies did not increase sub-
stantially. It  is clear that using only the content 
of milk fat, milk protein, and milk lactose, or MIR 
spectra in the model, does not result in high predic-
tion accuracy for NEI or DMI. In fact, the accuracy 
of predictions using only the MIR data was con-
sistently lower than that of a model using MY, fat, 
protein, and lactose concentrations. Based on their 
results, Wallen et al. (2018) concluded that PLS was 
more suitable than BLUP for predicting feed intake 
using the MIR spectra.

In addition to PLS regression, Salleh et al. (2023) 
investigated the usefulness of support vector ma-
chines SVM and random forest regression (RF) for 
predicting DMI using MIR data. Although these 
are advanced methods, the coefficient of deter-
mination for RF (0.62) and SVM (0.55) was lower 
than for PLS (0.65). However, Salleh et al. (2023) 
state that SVM and RF methods are more appro-
priately applied to predictive classification models 
than regression. 

Thus, several mathematical methods are used 
to derive equations predicting the FE  indicator 
based on FT-MIR and other predictors, includ-
ing PLS, machine learning algorithms, and BLUP. 
The most commonly used mathematical method 
is PLS, while other methods, such as best linear 
unbiased prediction (BLUP) (Wallen et al. 2018), 
are rarely applied. We can conclude that develop-
ments in mathematical methods for determining 
prediction equations have been observed over the 
past few years, with more complex mathematical 
approaches being applied over time (McParland 
et al. 2014; Dorea et al. 2018; Shadpour et al. 2022). 
However, the original PLS method remains a suit-
able approach for developing prediction equations 
(Salleh et al. 2023). 

Validation methodology. The calibration (train-
ing) step is followed by validation of the prediction 
model equation using an internal or external data 
set. In both steps, the similarity between the pre-
dicted and measured values of the dependent vari-
able, e.g. DMI, is assessed. The predictive ability 
of the model refers to its accuracy. The most com-
monly used statistical quantities for assessing the 
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predictive ability (reliability or accuracy) of a mod-
el are the coefficient of determination (R²), root 
mean square error (RMSE), ratio of performance 
to interquartile distance (RPIQ), and ratio of per-
formance to deviation (RPD). Validating FE trait 
prediction equations usually involves randomly se-
lecting a proportion of cows or samples from the 
data set for training and using the remaining data 
for validation (McParland et al. 2014; Shetty et al. 
2017; Wallen et al. 2018; Rachah et al. 2020). Dorea 
et al. (2018) state that although the potential of the 
employed methods is demonstrated, the results 
do not necessarily reflect the predictive accuracy 
of equations. To increase the credibility of the vali-
dation, Lahart et al. (2019) compared validation 
on a group of cows included in the experiment and 
a group of cows outside the experiment. They con-
cluded that validation using data obtained outside 
the actual experiment provides results with greater 
confidence regarding the valid applicability of the 
equations. Rachah et al. (2020) created two separate 
datasets, one for calibration and one for testing, i.e., 
an external data set. This ensures that the calibra-
tion cows were absent from the test set, allowing 
for correct validation. Cross-validation was based 
on  a  split sample (leave-one-cow-out). It  must 
be emphasised that Rachah et al. (2020) used only 
63 cows, of which 44 were used for calibration.

Shadpour et al. (2022) employed 10-fold cross-
validation in two approaches. The first approach 

(A) involved deleting 10 percent of the records, 
and the second approach (B) involved deleting 
10 percent of the cows. The testing set was ex-
cluded to assess the model’s predictive ability for 
the DMI of Canadian cows only. Therefore, only 
Canadian cows were included in the validation set. 
In contrast, the other nine subsets were used as cal-
ibration sets to estimate the model parameters. 
Each of the ten subsets was used once as a testing 
set during the cross-validation runs. When com-
paring validation approaches A and B, approach B 
consistently yielded lower fitting statistics than 
approach A. This is likely due to inflation caused 
by including the cow’s records in both the calibra-
tion and validation sets. Therefore, Shadpour et al. 
(2022) prefer approach B over A, as it also models 
the prediction of DMI for new cows, which they 
likely consider more reliable. 

The primary challenge in validating procedures lies 
in determining whether their results – specifically, 
high or low accuracy – are consistently reproduc-
ible in practice. For instance, Shadpour et al. (2022) 
aimed to enhance the repeatability of their findings 
by expanding the validation set to include data from 
other animals. Similarly, Lahart et al. (2019) chose 
to use data collected outside of their experiments 
for validation for the same reason. We can infer that 
a comprehensive evaluation of data from various 
experiments could lead to prediction equations that 
are more widely applicable.

 

Figure 3. Architecture of a 2-layer feed-
forward neural network 
yi = network output (e.g. predicted 
DMI of individual); where the subscript 
i refers to the individuals (from 1 to n) 
source: Adopted from Shadpour et al. 
(2022)
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Accuracy of FE trait prediction. The desired out-
come of FE prediction is a reliable and accurate 
estimate of the FE phenotype for animals without 
measured feed consumption, but for which predic-
tive factors, included in the prediction equation, 
are available. This accuracy is generally understood 
as the agreement between the predicted value of the 
FE trait for an animal and the value that would 
be found through actual measurement of feed con-
sumption. The published accuracy values achieved 
in several experiments are shown in Table 2 as the 
correlation coefficient (r) or R². The correlation 
coefficients between the predicted and actual val-
ues of the analysed trait range from 0.21 to 0.73. 
Accuracy varies between experiments, depending 
significantly on the mathematical method and model 
used. From a practical point of view, Ouweltjes et al. 
(2022) provided the most useful information regard-
ing the application of FT- MIR in FE prediction, with 
a maximum prediction accuracy of 0.55 (Table 2). 

A comparison of published test results shows that 
FT-MIR alone has low (Shetty et al. 2017) to me-
dium (Dorea et al. 2018; Shadpour et al. 2022) pre-
dictive power and must be combined with other 
predictive factors. As Wallen et al. (2018) point 
out, prediction equations based solely on MIR val-
ues consistently have lower predictive power than 
those with other predictors. Also, Salleh et  al. 
(2023) found the highest accuracy to be 0.60–0.65 
when the prediction of DMI was based on MIR 
data, supplemented with milk yield and concen-
trate DMI compared to only 0.19–0.40 when based 

on MIR alone. Lahart et al. (2019) confirmed earlier 
findings from Wallen et al. (2018), showing that 
predictions based on MY, milk composition, and 
BW were more accurate (r2 = 0.60) than those based 
on FT-MIR alone (r2 = 0.30). However, combining 
all sources of information, including MY, milk com-
position, FT-MIR, and NIR, resulted in an r2 = 0.68. 

The question is how much the individual FT-MIR 
wavenumbers as predictive factors will improve 
predictive accuracy. Shetty et al. (2017) expressed 
scepticism about the positive benefits of specific 
wavenumbers and noted that milk’s fat, protein, 
and lactose content can be  derived from milk 
samples by spectrometry (McDermott et al. 2016); 
therefore, the spectral data do not provide new 
information. According to Shetty et al. (2017), the 
same prediction accuracy can be achieved by us-
ing only the standard results from milk recording. 
In contrast, Dorea et al. (2018) found that using 
a mathematical method other than PLS – pecifi-
cally, ANN with Bayesian networks—and including 
FT-MIR in the prediction equation improved the 
prediction accuracy of FE traits over the model 
containing only milk components (concordance r = 
0.80 vs 0.72).

Many factors, in addition to the mathematical 
method used in calibration prediction methods, 
affect the accuracy of prediction equations for 
FE traits. In particular, this concerns the agreement 
between the experimental dataset and the dataset 
of animals to which the prediction equations are 
applied. For example, Shi et al. (2023) found that 

Table 2. Accuracy of eed efficiency (FE) trait prediction using FT-MIR

Trait Accuracy (r2) Mathematical method The other predictiv traits author
EB, EEI, ΔBCS, RFI 0.48–0.78 PLS MY McParland et al. (2014)
DMI, RFI 0.29–0.77 PLS BW, MY Shetty et al. (2017)
DMI 0.03–0.70 ANN, PLS, BN* MBW, MY, Mcont Dorea et al. (2018)
DMI, NEI 0.54–0.65 PLS, NEI BW, MY,Mcont Wallen et al. (2018)
DMI 0.16–0.81 PLS, linear regression BW, MY, Mcont, NIR Lahart et al. (2019)
DMI, EB, EEI 0.43–0.71* PLS MY, CONCTR Rachah et al. (2020)
DMI 0.47–0.73* ANN, PLS MBW, MY, Mcont Shadpour et al. (2022)

DMI 0.52–0.65 PLS, SVM and  
RF regression MY Salleh et al. (2023)

DMI, rDMI 0.21–0.55* PLS – Ouweltjes et al. (2022)

*Pearson correlation coefficient between observed and predicted DMI values;r2 = coefficient of determination
ANN = artificial neural networks; BN = Bayesian networks combined with ANN; ΔBCS = daily change in BCS; CONCTR = 
concentrate intake; DMI = dry matter intake; EB = energy balance; EEI = effective energy intake; Mcont = content of milk 
fat, protein and lactose; NIR Near-infrared reflectance spectroscopy of faeces; PSL = Partial least squares; rDMI = residual 
DMI; RFI = residual feed intake  
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changes in feed ratio can reduce the accuracy of the 
predictive equations, mainly because these changes 
induce responses in digestibility, milk production, 
and N intake. McParland and Berry (2016) found 
that, as expected, FE prediction accuracy is insuf-
ficient if the prediction equations are used on a da-
taset that is completely different from the dataset 
from which they were derived. 

Another perspective is considering the linear-
ity and nonlinearity of the mathematical analysis. 
Shadpour et al. (2022) concluded that a nonlinear 
interaction must exist between the weekly average 
DMI and the predictors used, as nonlinear ANN 
provided superior predictions compared to linear 
analysis. This conclusion is supported by the results 
of Dorea et al. (2018). The validation procedures 
employed also influence the resulting accuracies. 
Shadpour et al. (2022) found differences in ac-
curacy, favouring the procedure that deletes re-
cords compared to the one that deletes animals. 
Additionally, Lahart et al. (2019) reported better 
accuracies for validation using animals within 
the experiment. 

From this, it follows the suggestion that FT-MIR 
waves should demonstrate good predictive ability 
for DMI, RFI, or other FE indicators. However, the 
enhancement of the predictive power of the equa-
tion by incorporating FT-MIR waves was affirmed 
by Dorea et al. (2018), Shadpour et al. (2022), and 
Salleh et al. (2023), but not by Shetty et al. (2017). 
A possible explanation is the use of more advanced 
mathematical procedures by the two authors men-
tioned above. Both of them utilised ANN. However, 
this is not the case for Salleh et al. (2023), who 
achieved better results with PLS than with sup-
port vector machine regression (SVM) and random 
forest regression (RF). Lastly, the effectiveness 
of the employed mathematical methods depends 
on additional factors during the derivation of the 
prediction equations, such as the number of cows 
involved, the size and length of the experiment, etc.

Breeding applications

The purpose of determining prediction equations 
for the DMI phenotype is to enable their wide-
spread application in the dairy cattle population. 
For cows without direct measurements of DMI, 
the prediction equations are used to estimate DMI 
values. As discussed earlier, these equations of-

ten show a maximum correlation of 0.70 between 
actual and predicted DMI values. Ouweltjes et al. 
(2022) investigated the potential use of FT-MIR-
predicted DMI values in cattle breeding and re-
ported a maximum correlation of 0.55 between 
observed and predicted DMI values and 0.34 for 
rDMI during the validation of prediction equa-
tions. Both milk MIR-predicted DMI traits (DMI, 
rDMI) exhibited genetic variance, with heritabil-
ity estimates of 0.3 and 0.4 for DMI and rDMI, 
respectively. These heritability values fall within 
the range of heritabilities reported for various FE 
indicators by Jiang et al. (2024). However, the cor-
relations between sire estimates for milk FT-MIR-
predicted DMI traits and official breeding values 
for DMI and rDMI were low (0.14 and 0.03, respec-
tively). Based on those low correlations, Ouweltjes 
et al. (2022) concluded that the prediction of DMI 
or rDMI based on FT-MIR is not practical for use. 
However, they observed that cows consuming 
more feed tend to produce more milk, live longer, 
and exhibit poorer fertility, as indicated by the cor-
relations between sire EBVs for milk production 
(0.33), longevity (0.26), and fertility (−0.27). 

According to Wallen et al. (2017), the genom-
ic reference population must increase annually 
by 4 000 phenotyped and genotyped heifers to im-
prove FE through genomic selection in the target 
cattle population. The usual approach in selection 
is that the phenotypes for the directly selected trait 
are obtained by measuring the offspring of both the 
dams and sires. However, if phenotyping is more 
expensive than genotyping, as in the case of mea-
suring feed consumption, then updating the refer-
ence population through the genotyping of cows 
with FE records becomes a viable solution (Wallen 
et al. 2017). Chesnais et al. (2016) found in real-
world data that the accuracy of genomic selec-
tion for FE ranged from 0.45 to 0.58. According 
to Wallen et al. (2017), this level of accuracy could 
be achieved by incorporating the suggested num-
ber of 4 000 cows. Hayes et al. (2009) highlight 
that increasing the size of the genomic reference 
population enhances the reliability of selection. 
Another approach suggested by De Haas et al. 
(2011), is to use measurements from several coun-
tries based on international cooperation. 

The use of predicted FT-MIR phenotypes in ge-
nomic selection relies primarily on the accuracy 
of these predicted FE phenotypes. As we have seen, 
the prediction equations are relatively accurate; the 
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experiment depends on milk production and com-
position, as well as the cows’ body weight. FT-MIR 
brought improvements in some analyses, but the 
final prediction accuracy was sometimes as high 
as in other experiments without FT-MIR. The use 
of FT-MIRs alone, which is easily achievable, usu-
ally does not provide sufficient accuracy. However, 
one of the primary predictors, BW, is often unavail-
able. Therefore, the most feasible solution seems 
to be a combination of genomic selection and vari-
ous phenotypes, such as the feed-saved trait predic-
tion in Australia (Pryce et al. 2015). 

CONCLUSION

Predicting feed efficiency (FE) in dairy cows us-
ing FT-MIR data is complex and has intermediate 
accuracy. Developing robust predictive equations 
requires extensive experimental validation. FT-
MIR data is often combined with other traits that 
are more crucial for predicting FE. Achieving the 
same level of prediction accuracy for FE as for milk 
ingredients is unlikely. Despite this limitation, us-
ing FT-MIR to predict FE phenotypes is a promising 
method due to its simplicity and affordability for 
the entire population of cows under milk record-
ing. With a sufficient amount of recorded data and 
an optimised dataset structure in combination with 
advanced mathematical procedures, the prediction 
accuracy could be significantly improved, making 
it practical for breeding of dairy cows.
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