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Abstract: Management of inbreeding is one of the crucial parts of breeding programs in livestock populations.
Traditionally, the inbreeding coefficient is calculated using pedigree data; however, it can also be estimated from
genomic data. Nowadays, various approaches to estimating genomic-based inbreeding coefficients are increasingly
integrated into research and breeding practices. These genomic estimators can supplement or replace pedigree-
based coefficients. Each genomic-based inbreeding coefficient has its own properties and different ranges of values,
and some of them need specific settings for calculation. Moreover, depending on the methodological approach,
genomic estimators are sensitive to the population structure, genotyping technology applied, and the quality con-
trol of obtained genomic data. It is important to consider all these factors when calculating and especially when
interpreting the final genomic inbreeding values. For these reasons, using genomic-based inbreeding coefficients
can be more challenging than using pedigree-based ones. In this review, we comprehensively evaluate the most
commonly used genomic estimators of individual inbreeding in livestock, providing an in-depth analysis of their
advantages and limitations while offering insights into the methodological considerations and best practices for
their accurate calculation and interpretation.

Keywords: genomic relationship matrix; inbreeding coefficient; PLINK; runs of homozygosity; single nucleotide
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INTRODUCTION

An increase in inbreeding in populations leads
to the expression of recessive disorders, reduced
genetic diversity and a decline in selection re-
sponse. Furthermore, increased levels of inbreed-
ing may cause a reduction in the average value
of traits, known as inbreeding depression, which
has been documented across all livestock species

(Leroy 2014; Doekes et al. 2019; Gutierrez-Reinoso
et al. 2022). For these reasons, sufficient attention
must be paid to managing inbreeding in livestock
populations. Inbreeding can be described as an in-
crease in autozygosity due to the mating of related
individuals. In this context, autozygosity refers
to homozygosity in which two alleles are identi-
cal by descent (IBD), i.e. originating from a com-
mon ancestor. The level of inbreeding is measured
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by the inbreeding coefficient (F). All measures
of individual inbreeding seek to predict the pro-
portion of the genome that is IBD (Kardos et al.
2015). Wright (1922) defined the F as a correlation
between the parents’ uniting gametes and Malecot
(19438) as the probability that two homologous al-
leles in an individual are IBD. Villanueva et al. (2021)
used another definition of F regarding loss or gain
of variability relative to a reference base popula-
tion. To properly understand and interpret each
F calculated from genomic data, we need to know
which of the abovementioned definitions is used.
Genomic estimators of individual inbreeding are
usually divided into two main groups: Those analys-
ing each single nucleotide polymorphisms (SNPs)
separately (Fsnp, Froms Funp Farum) or those testing
uninterrupted segments of SNPs (Froy). Another
possibility is dividing F estimators based on the
extent to which they depend on allele frequency
(Dadousis et al. 2022).

This paper reviews the most commonly used
estimators of individual inbreeding in livestock
derived from genomic data. We highlighted their
advantages and limitations and provided a use-
ful summary of how to calculate and interpret
the genomic-based inbreeding coefficient in live-
stock populations.

GENOMIC-BASED INBREEDING
COEFFICIENTS

The most commonly used methods to meas-
ure F in livestock using genomic data are simple
heterozygosity or homozygosity measures (Fsyp;
Bjelland et al. 2013), estimators of the excess
of homozygosity (Fyon; Wright 1948) and corre-
lation between uniting gametes (Fyyp; Yang et al.
2010), estimators based on the diagonal elements
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of a genomic relationship matrix (Fggry; VanRaden
2008) and the proportion of runs of homozygosity
(From; McQuillan et al. 2008).

An overview of frequently used software for calcu-
lating different F estimators is presented in Table 1.
All the mentioned software can run on commonly
used operating systems, including Windows, Linux,
and MacOS. However, the author of GCTA recom-
mends using only the Linux version.

Despite several sophisticated approaches to de-
termine F, it is still unclear which genomic estimator
provides the most accurate information about genet-
ic variability and inbreeding depression. Yengo et al.
(2017) supported the use of SNP-by-SNP-based
F estimates with more weight for rare alleles, but
e.g. Nietlisbach et al. (2019) preferred ROH-based
F estimates. Caballero et al. (2020) claimed that
the reliability of obtained results strongly depends
on the particular population considered.

F based on homozygosity measures (Fgyp)

The inbreeding coefficient based on individual
SNP (Fsnp) is defined as the proportion of homo-
zygous SNP in each animal (Silio et al. 2013). It can
be calculated for the whole genome as follows:

NAA +Naa

Fop = 1
o NAA+NAu+N¢m ( )

where:

N, 4 — the number of SNP classified as AA;
N,, — the number of SNP classified as Aa;
N, — the number of SNP classified as aa.

Values of Fgyp can range from 0 to 1, where
0 means that each SNP is heterozygous and 1 means
that each SNP is homozygous.

Table 1. The most commonly used software running on Windows, Linux and MacOS for estimating genomic-based

inbreeding coefficients

Software F estimator

PLINK Frow Funp Farmr ROH screening (SWM)
GCTA From Funr Farm

R package detectRUNS ROH screening (SWM, CSM), Fyoy calculation
R package RZooRoH ROH screening (HMM)

CSM = consecutive single nucleotide polymorphism method; Fgrym = estimators based on the diagonal elements of a genomic

relationship matrix; Fyom = estimators of the excess of homozygosity; Fyny = correlation between uniting gametes;
HMM = method based on the hidden Markov model; SWM = sliding-window method
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This method is based on the assumption that in-
dividuals with higher homozygosity will be more
inbred. Calculation of Fgyp was used in a few studies
to measure F and quantify inbreeding depression
effects (Bjelland et al. 2013; Martikainen et al. 2017;
Reverter et al. 2017; Dadousis et al. 2022). Although
it can provide some information about the level
of inbreeding, it does not distinguish between ir-
ritable bowel syndrome (IBS) and inflammatory
bowel disease (IBD) markers (Bjelland et al. 2013).
This approach can serve as information about ge-
netic erosion but it does not provide a detailed view
of the genetic architecture of the analysed popula-
tion (Szulkin et al. 2010).

F based on the difference between observed
and expected homozygosity (Fyom)

Fyowm is equivalent to Wright’s fixation index
(Fig), ranging from —1 to 1. The calculation of Fyjoum
is based on the difference between the observed
and expected number of homozygous genotypes.
Expected homozygosity is estimated from allele
frequencies, and observed homozygosity is direct-
ly derived from individual genotypes. It depends
on the amount of genetic variation in the population
and the level of inbreeding (Ritland 1996). Values
higher than 0 represent an excess of homozygos-
ity (inbreeding) (Schiavo et al. 2020). On the oth-
er hand, values lower than 0 represent an excess
of heterozygosity (outbreeding) (Zhang et al. 2015;
Xuetal. 2021). Villanueva et al. (2021) claimed that
even if the Fijop is not a probability or a correlation,
it can be useful for determining whether variability
is lost or gained. Fjopm can be calculated by the for-
mula proposed by Wright (1948):

Fo [O(# hom)—E(# hom)]
HOM [1 —E(# hom)] @
where:

O (#hom) — the observed numbers of homozygous geno-
types in the sample;

E (#hom) — the expected numbers of homozygous geno-
types in the sample.

The most commonly used software for calculating
Fyowm is PLINK (command --ket and --ibc; Chang
et al. 2015), where Fyou is labelled as Fhat2, and
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GCTA (command ——zbc, Yang et al. 2011), where
Fyowm is labelled as FH Both methods are based
on the same approach and show similar results,
where --het calculates Fyop as follows:

s
Z % (2-,)

Fow=l-S ——— 3
Z fe lzpk —Pi)

where:

S — the total number of markers;

%, — the number of minor alleles of marker k (i.e. 0,

1 or 2 copies);
Pr — the current frequency of the minor allele in the

population.

The only difference between those two approach-
es is that the sumation over markers is made differ-
ently in each case; --het is a ratio of sums, whereas
--ibc is a sum of ratios.

F based on the correlation between uniting
gametes (Fyny)

Inbreeding estimator Fyyy; is based on the corre-
lation between uniting gametes (Yang et al. 2010).
It is directly related to a definition proposed
by Wright (1922) and can be calculated as follows:

Foa =521, % o ey : @
p(d=p)

where:

S — the total number of markers;

X — the genotype of the individual for SNP;

k —coded as 0, 1 or 2 for genotypes AA, AB and BB;

Px — the frequency of the reference allele (allele B)

of SNP k in the base (reference) population.

This estimator is implemented in PLINK (Chang
et al. 2015) and GCTA (Yang et al. 2011) software
(Fhat3 and Fm by command --ibc. Nietlisbach
etal. (2019) claimed that the values Fyyjcan range
from —o to . However, Villanueva et al. (2021)
and Dadousis et al. (2022) reported that the val-
ues of Fyyp can range from —1 to e and results
indicate the loss (positive values) or gain (nega-
tive values) of variability in the genome compared
to the reference population. In general, higher Fyy;
values indicate a higher inbreeding rate in animals,
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while lower (or negative) values suggest a lower
rate of inbreeding.

This method is widely used in evaluating live-
stock populations, although it usually serves only
as supplementary information and conclusions
are based on other approaches (mainly Froy).
Studies that have looked deeper into a pattern
of Fyni and examined its advantages and disad-
vantages have been conducted on simulated data
or small populations (Yengo et al. 2017; Kardos
et al. 2018; Nietlisbach et al. 2019; Caballero et al.
2020; Villanueva et al. 2021). Fyyn; based on corre-
lations between genetic effects gives more weight
to homozygosity at rare alleles (Keller et al. 2011).
Alemu et al. (2021) claimed that Fyy; could have
a strong association with inbreeding depression.
However, the situation might differ when reces-
sive deleterious alleles reach higher frequencies like
in populations with the low effective population
size (N,). Similar reccommendations were provid-
ed by Nietlisbach et al. (2019) and Caballero et al.
(2020). In populations with large N,, where animals
are less related and deleterious alleles are expected
to be at lower frequencies, Fyyj provides almost
unbiased average estimations of inbreeding depres-
sion. Dadousis et al. (2022) said that Fyy; is hard
to interpret for a practical application in popula-
tions under intense directional selection. However,
this estimator can provide some information about
lost or gained variability (Villanueva et al. 2021).

F based on genomic relationship matrix (Fggy,)

VanRaden (2008) presented multiple approaches
to F calculation based on the diagonal element
of the genomic relationship matrix. The first one, of-
ten referred to as VanRadenl (VR1), can be calcu-
lated as follows:

ZZ:I (xk _Zpk)

Form = s ®)
2Zk:1pk(l_pk)

where:

S — the total number of markers;

X — the genotype of the individual for SNP;

D — the frequency of the reference allele (allele B)

of SNP k in the base (reference) population.

This approach weighted homozygous genotypes
by the inverse of their allele frequency and, thus,
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rare homozygous genotypes contribute more
to the inbreeding measure than common homozy-
gous genotypes (Villanueva et al. 2021). The second
approach, often referred to as VanRaden2 (VR2),
can be calculated as follows:

l s [ (x —2p )
Fon=— R 6
o SZkl[zpk(l_pk) ©
where:
S — the total number of markers;
X — the genotype of the individual for SNP;
P, — the frequency of the reference allele (allele B)

of SNP £ in the base (reference) population.

This method is very similar to VR1, but the summa-
tion across markers is made differently, so the weight
given to rare alleles is even greater. In this case,
the contribution of each SNP is divided by its own
variance, whereas in VR1, the contributions of all
SNPs are divided by the same denominator. This
method is included in PLINK (Chang et a}. 2015)
and GCTA (Yang et al. 2011) as Fhatl and F; under
--ibc command. In general, when we compare results
of inbreeding coefficient derived from VR1 and VR2,
they behave similarly. Although values derived from
VR2 are more extreme (Villanueva et al. 2021), Fgrm
results highly depend on allele frequency assump-
tions. Optimally, allele frequencies should represent
frequencies in the founder population. Because these
frequencies are mostly unknown, they are replaced
by the allele frequency of evaluated population or set
to a fixed value. We need to point out that if the eval-
uated sample is small, the allele frequency can be very
inaccurate, and the Fgpy results can be misleading.
A simulation study by Forutan et al. (2018) showed
that using a fixed allele frequency of 0.5 can be ben-
eficial. Also, the authors who performed analyses
on real populations argue that using fixed allele
frequencies can be helpful (VanRaden et al. 2011;
Doekes et al. 2019; Lozada-Soto et al. 2022). A more
extensive overview of the usage of different GRM
utilising fixed or real allele frequency was provided
by Villanueva et al. (2021) and Dadousis et al. (2022).

VR2 without fixed allele frequency is often used
in current studies, probably due to the implemen-
tation of this method in commonly used software.
Villanueva et al. (2021) and Dadousis et al. (2022)
claimed that values of this estimator can range from
—1 to oo, where positive values signal loss of vari-
ability and negative values signal gain of variability
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relative to the base (reference) population. In gener-
al, the interpretation is same as for Fyyy;. The higher
Firy values indicate higher inbreeding in animals,
while lower (or negative) values suggest lower
inbreeding. Zhang et al. (2015) reported that
if the population has a high level of heterozygosity
and some rare alleles with low frequency, Fgry will
yield high positive inbreeding coefficients, which
can be misleading. However, this is unusual in live-
stock populations under directional selection.

F based on runs of homozygosity (Frqy)
ROH are defined as continuous homozygous

segments in the DNA sequence, and the general
formula for calculating Froy is as follows:

Lyo

Frop =~ (7)
autosome

where:

Lron — the sum of individual lengths of ROH;

L. osome — the total length of autosomes covered

by SNPs.

Results of Fpq; can range from O to 1 and can be in-
terpreted as a proportion of the genome that is IBD.
Caballero et al. (2020) showed that for populations
with low N,, where individuals are more related
to each other, Fy}; provides more accurate inbreed-
ing depression estimates than other F estimators.

One of the main advantages of Froy is the abil-
ity to separately estimate recent and historical
inbreeding by calculating Froy from ROH of differ-
ent lengths. This can be very useful due to the dif-
ferent effects of recent and historical inbreeding
on the population gene pool (Doekes et al. 2019).
Short ROH indicates historical connectedness, and
long ROH may reveal recent inbreeding (McQuillan
etal. 2008). Ferencakovic et al. (2013a) placed ROH
in five length classes: 1 to 2,2 to 4, 4 to 8, 8 to 16
and >16 Mb, where ROH >1, >2, >8 and > 16 Mb,
representing up to =~ 50, = 25, ~6 and ~ 3 generations
from common ancestor, respectively. However, this
distribution of ROH length categories was addressed
to cattle, and it is questionable whether its use in oth-
er species leads to sufficiently accurate results.

In general, we can say that the most problem-
atic part of the Froy calculation is the detection
of ROH in the genome. There are three methods
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to detect ROH: sliding-window method (SWM),
consecutive SNP method (CSM) and method based
on the hidden Markov model (HMM). The cho-
sen method and its specific settings significantly
impact the number and length of detected ROH.
The first method, using a sliding window to scan
the genome, is described in Figure 1.

The second method is window-free and it directly
scans the genome of SNP by SNP. It was first proposed
by Marras et al. (2015). In both approaches, multiple
parameters need to be pre-set, which is a crucial part
of ROH detection. The optimal value of run-related
parameters depends on the species, number and
length of chromosomes, genome length, and den-
sity of SNP chips. The parameters that need to be set
before the analysis are summarised in Table 2. Several
studies tested the effect of different settings that di-
rectly affect ROH screening (Hillestad et al. 2018;
Meyermans et al. 2020; Macciotta et al. 2021) and
Frop calculation (Yengo et al. 2017; Mulim et al.
2022) but there has been no standard yet. This fact
makes it difficult to compare results from different
studies, as mentioned by Peripolli et al. (2017).

In the case of cattle, Ferencakovic et al. (2013a)
proposed the most commonly used settings, but
some authors still use their own settings based
on an empirical approach. In other species, no op-
timal settings have been established.

The minimal number of SNPs in ROH (L) can
be determined by the formula proposed by Lencz
et al. (2007) and adapted by Purfield et al. (2012):

a
log, —
= nn; 8)
log,(1—het)

where:

a — the percentage of false positive ROH;

het  — average heterozygosity across all SNPs;

n; — the number of genotyped individuals;

7R — the number of genotyped SNPs per individual.

Meyermans et al. (2020) proposed a formula for
the calculation of the scanning window threshold
(2) as follows:

N_ +1
t =floor ( out ,3j )
L
where:
N — the desired number of final outer SNPs on either

out
side of the homozygous segment that should not
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be included in the final ROH;
L — the scanning window size.

In this formula, “+ 1”7 denotes the first SNP that
will be tolerated of the final ROH and “3” points
at flooring with three decimals. For example, with
L = 100 and N, =4, the threshold will be set
at 0.05. This will lead to scanning the windows
of 100 SNPs and in the obtained homozygous seg-
ment we discard the four outer SNPs on each side
of the homozygous segment.

Steps in detecting ROH
by sliding-window approach

1. Sliding window scans the genome
and assigns a score to each individual
SNP based on thether it appears

in a homozygius window or not.

2. Segment is detected if every single
SNP fulfills a predefined threashold.

3. Segment is checked for settings such
as the maximum gap between SNP and
the number of heterozygous and missing
SNP. If the swgment doesn’t meet the cri-
teria, it is broken and reevaluated.

4. Segment is evaluated for minimum SNP
density, minimum lenght, and the number
of SNP. If thee segment meets the predefi-
ennd criteria, it is defined as an ROH.

Figure 1. Description of the sliding-window approach

https://doi.org/10.17221/91/2024-CJAS

We reviewed 48 studies focusing on ROH detec-
tion based on medium-density SNP data (29 us-
ing SWM, 19 using CSM) to identify commonly
used settings. The species included in these studies
were cattle (29), pigs (8), goats (6), and sheep (5).
Figure 2 shows that 1 Mb is the most commonly
used minimum length for the ROH and the gap
between two SNPs. A length of 100 kb is the most
preferred SNP density. Regarding the minimum
number of SNPs in ROH, it is commonly required
that ROH contain at least 15 or 30 SNPs. The authors

ROH = runs of homozygosity; SNP = single nucleotide polymorphism

Source: Bjelland et al. (2013); Winnberg (2020)

Table 2. Run-related parameters for ROH detection

Parameter

Sliding-window method Consecutive SNP method

Minimum number of SNPs included in ROH
Minimum length of ROH in bp

The gap between two SNPs to be considered as a ROH
Number of heterozygous calls allowed in ROH
Number of missing calls allowed in ROH

Minimum number of 1 SNP per kb

Number of heterozygous calls allowed in a window
Number of missing calls allowed in a window
Number of SNPs that the sliding window must have
Window of threshold a sliding genomic window

v

A N N N N N NN
X X X X x NN

ROH = runs of homozygosity; SNP = single nucleotide polymorphism

274



Review Czech Journal of Animal Science, 69, 2024 (7): 269-279
https://doi.org/10.17221/91/2024-CJAS
(A) 12.51 (B)
£ 10.01 g 30
g o
£ 751 g 20
3 501 <
) s 101
Z 2.51 Z
0.01 01
0 10 15 20 25 30 40 43 50 0.10 0.25 0.50 1.00 2.00 4.00 5.00
SNP Mb
© (D)
® )
2 20 5 ]
= E 20
5 s
o 101 . 10
3 o
Z Z
0 , , : : 0+ .
0.25 0.50 1.00 5.00 0 1 2
(E) Mb (F) SNP
151
< 10/ ks
= T 104
5 5] K |
. S 5
zZ 2
0 1 01
0 1 2 5 50 70 90 100 120 150 500 1000
SNP Kb

Figure 2. Review of settings for detecting ROH

(A) minimum number of SNPs included in ROH, (B) minimum length of ROH, (C) the gap between two SNPs
to be considered as ROH, (D) number of heterozygous calls allowed in ROH, (E) number of missing calls allowed

in ROH, and (F) minimum number of 1 SNP per kb

ROH = runs of homozygosity; SNP = single nucleotide polymorphism

most often allow 1 heterozygous and 1 missing SNP
in ROH. It is necessary to mention that the number
of heterozygous and missing SNPs allowed in ROH
should depend on the ROH length. Although many
authors used the same settings for all length catego-
ries, we highly recommend using the specific number
for each length category of ROH like Ferencakovic
etal. (2013b) or Nosrati et al. (2021). Because the au-
thors do not often mention in the methodology all
settings used for ROH detection, it was not possible
to summarise the most commonly used settings for
all run-related parameters.

ROH detection based on HMM is the newest
method. This model describes the individual ge-
nome as mosaics of multiple homozygosity-by-de-
scent (HBD) and non-HBD classes (k). The different
HBD classes are defined by their specific rates Ry.
The length of HBD segments from class k is ex-
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ponentially distributed with the rate R; and
mean 1/R;. To compute the probability of such
a sequence, the model requires the probability
to stay in the current segment or to start a new
segment between two consecutive markers and
the probability to observe the particular genotype
conditionally on the class specificities. The prob-
ability to continue a segment is, where Ry is the rate
specific to class k. As a result, the length of HBD
segments from class k is exponentially distributed
with the rate R;. The expected length is then equal
to 1/R; morgans (Bertrand et al. 2019).

One of the important steps before detecting ROH
is quality control of the genomic data, primarily
minor allele frequency (MAF) pruning. In general,
when analysing SNP data, monomorphic SNPs are
considered uninformative and should be removed
during quality control. Usually, the value of MAF
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pruning included in quality control ranged from 0.01
to 0.05. However, when detecting ROH by SWM
or CSM, there is no consensus on whether we should
include MAF pruning in quality control. Howrigan
et al. (2011) recommended to include MAF prun-
ing in data quality control based on their research
performed on simulated data. However, a recent
study by Meyermans et al. (2020) showed that MAF
pruning can overlook large homozygous regions.
Therefore, they do not recommend including MAF
in data quality control before ROH analysis. There
is a probability that if monomorphic markers are
excluded due to MAF pruning, the segment should
not be considered as ROH because it did not meet
the criteria such as minimum of SNP per kb, maxi-
mum gap between two SNPs, or minimum number
of SNPs included in the ROH. In the case of HMM,
Druet et al. (2019) claimed that this approach is not
sensitive to MAF pruning, and they found only neg-
ligible differences when applying different settings
in MAF pruning. Due to the fact that the evidence
and explanation of different settings for MAF fil-
tering in ROH detection are inconsistent, further
research is necessary to fully explain the optimal
approach depending on the density of genomic data
and species analysed.

Ferencakovic et al. (2013b) pointed out that
the density of the SNP chips used to generate
the data for ROH analysis and also the frequen-
cy of SNP genotyping errors can influence ROH
identification. Many authors (Purfield et al. 2012;
Aliloo et al. 2018; Ceballos et al. 2018) reported that
the use of at least a 50k panel in detecting ROH with
SWM and CSM is recommended. The use of low-
density panels can underestimate the number
of long ROH due to the low number of SNP mark-
ers and the high physical distance between them
(Mulim et al. 2022). On the other hand, the 50k
panel overestimated the number of small segments
(1-4 Mb long) (Purfield et al. 2012; Ferencakovic
et al. 2013b). Marras et al. (2015) pointed out that
the use of medium-density chips may provide good
estimates in populations with recent inbreeding
and high linkage disequilibrium (LD), but the pre-
cise detection of autozygosity in populations with
more “ancient” inbreeding and low LD will require
high-density data. Therefore, the minimum ROH
length that can be detected depends on the density
of the SNP chips (Ferencakovic et al. 2013b).

Another factor that can influence the mini-
mum ROH length that can be accurately detected
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is an applied statistical approach to ROH screen-
ing. HMM can be more accurate than SWM and
CSM for analysing the genomic data that are
sparser or less accurate, such as low coverage se-
quencing data, or low-density SNP data (Druet
and Gautier 2017). This statement is also sup-
ported by the study conducted by Lavanchy and
Goudet (2023) where they compared the accu-
racy of PLINK and RZooRoH in ROH detection.
RZooRoH requires a significantly lower proportion
of SNPs per Mb (2 SNPs/Mb compared to PLINK
(22 SNPs/Mb) to precisely estimate inbreeding co-
efficients. Sole et al. (2017) claimed that despite us-
ing low-density SNP arrays (7K and 32K), HMM can
efficiently capture recent autozygosity. The correla-
tion between inbreeding coefficients obtained with
low-density arrays and those from higher density
(600K SNPs) was 0.934 for 7K and 0.975 for 32K.
This can serve as an advantage of HMM. However,
the computation time of this method is much long-
er than that of CSM or SWM, which can be a dis-
advantage of HMM (Ceballos et al. 2018).

The SNP genotyping error is another factor
that needs to be considered. In SWM and CSM
it is possible to consider the bias due to potential
genotyping errors depending on the allowance
of heterozygous genotypes in ROH. If we do not
allow any heterozygous genotype in ROH, there
is a possibility of splitting a very long ROH into
two shorter ROH. In this case, these segments
will still be considered as ROH, and the overall
level of autozygosity will be unaffected. However,
if this happens to short segments, they may not
be able to reach the minimum size of a ROH,
and the autozygosity of the examined animal will
be underestimated. On the other hand, allowing
too many heterozygous genotypes in ROH can lead
to the detection of short segments that are most
likely not autozygous (Ferencakovic et al. 2013b).
When it comes to considering the genotyping er-
ror in ROH detection with HMM, it is necessary
to specify it before detection. The authors mainly
used the value of the genotyping error of 0.25%
specified by Ferencakovic et al. (2013b).

CONCLUSION

Although each F estimator provides valuable
insights into the genomic inbreeding levels with-
in the studied population, they exhibit slightly
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different features and usage. Based on recent stud-
ies in livestock, Froy provides the most reliable
parameter for estimating individual inbreeding
as well as tracking inbreeding trends, particularly
with high-density genomic data and proper set-
tings. On the other hand, Fyy; seems to be the
most problematic of all the estimators described.
Based on our research, we do not recommend
using it in livestock populations without proper
knowledge and experience. We hope our review
helps better understand the features of commonly
used genomic-based inbreeding coefficients and
provides a short guide to their calculation and in-
terpretation in livestock populations.
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