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Abstract: Scientific growth literature often uses the models of Brody, Gompertz, Verhulst, and von Bertalanffy. 
The versatile five-parameter Bertalanffy-Pütter (BP) model generalizes them. Using the least-squares method, 
we fitted the BP model to mass-at-age data of 161 calves, cows, bulls, and oxen of cattle breeds that are common 
in Austria and Southern Germany. We used three measures to assess the goodness of fit: R-squared, normalized 
root-mean squared error, and the Akaike information criterion together with a correction for sample size. Although 
the BP model improved the fit of the linear growth model considerably in terms of R-squared, the better fit did 
not in general justify the use of its additional parameters, because most of the data had a non-sigmoidal character. 
In terms of the Akaike criterion, we could identify only a small core of data (15%) where sigmoidal models were 
indispensable.
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The location of the inflection point is a good ex-
ample. For the Verhulst model of logistic growth 
the mass at the inflection point is always 50% of the 
asymptotic (adult) mass, regardless of the data. 
For the BP model the ratio may attain any value 
between 0% and 100% and there are also curves 
without inflection point. Its growth curves, mass 
m(t) at time t, are solutions of the following dif-
ferential equation:

m´(t) = p × m(t)a – q × m(t)b 	  (1)

The parameters of Equation (1) are the non-
negative exponent pair a < b, the constants p and 
q, and the initial value, i.e. m(t0) = c > 0, where 
t0 is the first considered point of time (e.g. t0 = 0 
for natal mass). These five parameters are deter-
mined by fitting the model to mass-at-age data. 
The above-mentioned cited models are special 
cases: when the  exponent pair (a,  b) is preset, 
this defines a unique model BP(a, b) of a certain 
shape that uses only three parameters (p, q, c). 

According to FAO (2021), domestic cattle (this 
paper focuses on Bos taurus) are “the most common 
and widespread species of large ruminant livestock 
and are raised primarily to produce milk, meat and 
hides and to provide draft power”. In comparison 
with other livestock, the reproduction rate is low, 
and calves need much maternal care, whence 
the rearing of cattle is costly and there is an inter-
est in growth modelling to improve selection and  
increase the  efficiency of  production (Arango  
and Van Vleck 2002; Mota et al. 2013; Goldberg and Ra- 
vagnolo 2015). Commonly used models, aside 
from simple linear or exponential growth, include 
Brody’s model and the sigmoidal models (with 
S-shaped growth curves) of Gompertz, Richards, 
Verhulst, and von Bertalanffy (Nogales et  al. 
2017). This paper studies the Bertalanffy-Putter 
(BP) model (Putter 1920; Ohnishi et al. 2014), as it 
generalizes and unifies these models. The main ad-
vantage of this model over the mentioned simpler 
models is the added flexibility with respect to the 
shape of the growth curves (Brunner et al. 2021). 
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BP(0, 1) is the Brody model, BP(1, 2) the Verhulst 
model of logistic growth, and BP(2/3, 1) the von 
Bertalanffy model. The Gompertz model is the lim-
it case BP(1, 1) with a different differential equation 
(Marusic and Bajzer 1993). The Richards model is 
the BP model with a = 1 and the free parameters 
b > 1, c, p, and q. 

The general BP model has been successfully used 
to describe the growth of chickens (Kuhleitner 
et al. 2019), dinosaurs (Brunner et al. 2019), fish 
(Renner-Martin et al. 2018), or goats and sheep 
(Brunner and Kuhleitner 2020). Here we asked if 
the BP model could provide additional insight into 
the growth of cattle, whereby we aimed at recom-
mendations about growth modelling for practition-
ers: we compared linear and nonlinear models and 
asked which type of model might be most suit-
able for modelling the biological growth of cattle. 
Using size-at-age data from 161 male and female 
beef and dairy cattle from eight different breeds 
reared in Austria and Germany, for each animal 
we identified its best-fit parameters for  the BP 
model by  means of  the least-squares method. 
A visual inspection of the growth data displayed 
a rather linear shape. However, as was pointed out 
by Nogales et al. (2017), traditional nonlinear mod-
els (Brody, Richards) achieved excellent fits to the 
biological growth curves of cattle. We therefore 
used the Akaike information criterion to decide 
if the improved accuracy could justify the added 
complexity of the model. 

MATERIAL AND METHODS

Data

Our data were provided by cattle farms, industrial 
keepers, agricultural colleges, and animal research 
institutes from Austria and Germany. As two sourc-
es asked for commercial confidentiality, we pseu-
donymized the data. 

Our data identified the breed, the sex and age 
class (nine female and eight male calves, 81 cows, 
50 bulls, and 13 oxen), the  feeding regime and 
the type of husbandry. The data could be grouped 
into three classes. 21 data were about beef cattle, 
namely Aberdeen Angus (two cows, six bulls) and 
Wagyu (13 oxen). 44 data were about traditional 
alpine breeds used both for milk and meat pro-
duction. Of  them, Fleckvieh (Simmental cross-

breds) is the most common breed in Austria (ZAR 
2014). We had data about one cow of Braunvieh 
(Brown Swiss), 18 bulls of Fleckvieh, nine female 
calves, eight male calves, two cows, and six bulls 
of  Murbodner. The  latter is a  rare breed from 
the  Eastern Alps and it is genetically related 
to Fleckvieh (Kidd and Pirchner 1971). Its conser-
vation is supported under the Austrian gene pro-
tection program. The largest group was composed 
of 96 head of Holstein cattle (20 bulls, 76 cows), 
a specialized dairy breed that can be found across 
the world. Our data distinguish several varieties: 
76 cows of Holstein-Schwarzbunt, and 6–7 bulls 
each of Holstein-Friesian, Austria varieties (AT), 
and New Zealand varieties (NZ). The beef breeds 
were grazing on pastures during summer, the 
13 oxen all the year round (except during very harsh 
weather conditions), and they received additional 
feed (concentrates). The others were kept in play 
pens with occasional outdoor visits. Their feed-
ing was based on silage with added concentrates, 
except for Murbodner (no added concentrates). 
In view of commercial confidentiality and ongoing 
experiments, we were asked not to disclose fur-
ther details of the feed composition (each keeper 
used their own recipes optimized for the breed) or 
to aim at comparing the impact of different feed 
compositions. 

The mass-at-age data were in the form kg at day, 
whereby birth was at day zero. We considered only 
data with five data points or more, as we fitted 
a five-parameter model to the data. However, eight 
or more data points were needed for the model 
comparison (see below). In  the median calves 
were most often weighed (22 and 18.5 data points 
for females and males), followed by cows (15), oxen 
(11) and bulls (8). The timespan of the data dif-
fered, depending also on commercial practices. 
Animals that were needed for breeding could sur-
vive for several years; others were sold or slaugh-
tered early. For 66 animals weighing started in the 
first week of their lives, amongst them all calves. 
For the oxen, weighing started late (in the median 
at day 880), as they were purchased from breeders 
for fattening. For cows and bulls, in the median 
weighing started at  days 20 and 142.5, respec-
tively. In  the median the  measurements ended 
at day 722 for cows, at day 509.5 for bulls, at day 
1 107 for oxen and at days 365 and 215 for female 
and male calves, respectively. The maximum age 
was  2  585 days. For  beef breeds the  maximum 
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if (ti, mi) are n mass-at-age data, then SSE is defined 
by Equation (2): 

n

(2)SSE = Σ [mi – m(ti)]2

i = 1

Previously data fitting was troublesome for the 
BP  model (numerical instability), as  variations 
in one parameter could be offset by suitable changes 
of the other parameters. As common optimization 
tools were not always able to find the five best-fit 
parameters for Equation (1), we used the following 
strategy: we defined a grid of exponent pairs (a, b) 
with step size 0.01 in both directions and for each 
grid-point exponent pair we minimized Equation (2) 
for three parameters. Thus, we identified the best 
fitting model parameters (p, q, c) for fixed expo-
nent pairs (a, b). To speed up the computations, 
we started with a small grid. If the search identi-
fied a best-fit exponent pair on the boundary of the 
grid, we added more grid-points and continued op-
timization, until we found a best-fit exponent pair 
surrounded by suboptimal grid-points. For each 
grid-point (a, b), the optimization of p, q, and c was 
done using a custom-made variant of the simulated 
annealing method (Vidal 1993). We thereby used 
a strategy that assured positive parameters (p, q, c) 
and therefore bounded growth functions. The details 
and the Mathematica-code were outlined in other 
papers (Renner-Martin et al. 2018). 

Our grid search explains why the computations 
were so time-consuming. As  mentioned in  the 
data section, this resulted in limitations for sample 
size. For the same reason, we did not identify any 
confidence intervals for the best-fit parameters. 
Moreover, we were not so much interested in this 
variability of model parameters for one animal. 

Instead, we wanted to study the (larger) variabil-
ity of derived model parameters across the differ-
ent animals. In view of the unknown distribution 
and the (occasionally) small sample sizes for this 
purpose, we used Clopper-Pearson 95% exact con-
fidence intervals. These intervals are known to be 
conservative (the confidence for the lower and up-
per bounds was higher than the nominal 97.5%).

Model comparison

To compare the goodness of fit across different 
data, we report the coefficient of determination, 

weights were 1 426 kg for Aberdeen Angus bulls 
(median maximal mass 522 kg), 1 175 kg (522 kg) 
for Aberdeen Angus cows, and 938 kg (822 kg) for 
Wagyu oxen. For traditional breeds, the maximal 
weights for Murbodner were 615 kg (472.5 kg) for 
bulls, 677 kg (613.5 kg) for cows, 432 kg (348 kg) 
for male calves and 470 kg (382 kg) for  female 
calves. Further, we observed 748 kg for one cow 
of Braunvieh and 750 kg (677.5 kg) for Fleckvieh 
bulls. For  Holstein cattle, the  maximal weight 
was 830 kg (656.5 kg) for Schwarzbunt cows, 596 kg 
(579 kg) for AT bulls, 672 kg (639 kg) for Friesian 
bulls, and 609 kg (571 kg) for NZ bulls. 

To eliminate from our data systematic effects 
which can affect the growing ability of individuals 
(other than sex, breed, feeding regime etc.), we con-
sidered only data that resembled biological growth, 
whence we disregarded sources that applied com-
pensatory growth. Compensatory growth utilized 
the ability of animals to undergo enhanced growth 
after a period of restricted feeding (Mullins et al. 
2020), whence the resulting growth curves system-
atically differed from the traditional model curves, 
as they added a phase of accelerated growth, where 
the traditional models (and the BP model) assumed 
a slowing down of growth. As to the sample size, 
the number of 161 individuals at first may appear 
small. However, our computations to  identify 
the best-fitting BP model (using Mathematica soft-
ware v12.3.1; Wolfram Research, Inc., Champaign, 
IL, USA) required about a week of central process-
ing unit time per individual (based on standard 
commercial PCs), whence there were resource limi-
tations. However, the sample size was large enough 
for our goal of comparing different models for the 
biological growth of cattle in general. Of course, 
when grouping the animals into 13 classes stratified 
by sex and breed, the resulting sample sizes were 
too small to identify possible influences of sex and 
breed on the pattern of growth. Further, for our 
data animals of the same sex and breed were grown 
under similar conditions, whence we did not aim 
at recommendations about husbandry or diet. 

Data fitting

We aimed at finding parameters that minimized 
sum of squared errors (SSE), the sum of squared 
errors. If m(t) is a solution of Equation (1), using 
certain exponents a < b and parameters p, q, c, and 
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R-squared (R2) of Equation (3); it uses the notation 
of Equation (2). We used the threshold R2 ≥ 99% 
to define an excellent fit. 

R2 = 1 –
SSE

(3)
Σ n [mi – mean(m1, m2, … mn)]2

i = 1

We also report a normalization NRMSE (normal-
ized root mean squared error) of the root mean 
squared error; Equation (4). We used the threshold 
NRMSE ≤ 5% to define a good fit.

NRMSE = √SSE/n (4)
max(mi) i ≤ n

Owing to certain limitations of R2 and NRMSE 
(Spiess and Neumeyer 2010) we used the Akaike 
information criterion for model selection. Thereby, 
as the size of our data varied widely (five to 70 data 
points), we used its version Akaike information crite-
rion together with a correction for small sample sizes 
(AICc) of Equation (5). It combined a measure of the 
goodness of fit with a penalty for model parameters, 
whereby  for small datasets the penalty was par-
ticularly high (Motulsky and Christopoulos 2003; 
Burnham and Anderson 2004). When comparing 
two models, the model with the lower AICc was se-
lected as the more parsimonious one. 

AICc = { n × ln (SSE) + 2 × k + 2 × k × (5)n

× k + 1   for  n > k + 1
n – k – 1

∞ otherwise

where:
n 	 – the number of data points;
k 	 – the number of optimized parameters of the model 

(including SSE).

When comparing m models (with AICc1, ..., AICcm, 
respectively), whereby AICcmin is the least of their AICc 
values, then Equation (6) computes the probability, ℘i, 
that the ith model would be “true”, when compared to 
the other models. We used the threshold ℘i < 5%  
to refute a model as “false”. Models with ℘i ≥ 5% had 
an acceptable fit (relative to the other models). 

℘i =
exp (– AICci – AICcmin )

(6)2

Σm exp(–  
AICcj – AICcmin )j = 1 2

In addition to these general measures for model 
comparison, we used the parameters of the best-fit 
BP Equation (1) to compute certain parameters with 
an empirical meaning. This allowed to check if the pa-
rameter values would be reasonable. Some authors 
defined growth models directly from such empirically 
interpretable parameters (Tjorve and Tjorve 2017). 

Equation (7) computes the asymptotic mass mmax 
for the best-fit model parameters; its empirical in-
terpretation is adult mass. Note that the growth 
curve was unbounded if q = 0. We compared the as-
ymptotic mass with the maximal observed mass 
max(mi), the maximum of the data mi. We con-
sidered that the asymptotic mass was supported 
by the data if the ratio mmax/max(mi) was below 2. 
Otherwise, asymptotic mass was excessive. 

1

mmax =( p ) b – a (7)q

Mass growth of animals in general has a  sig-
moidal pattern, with fast initial growth that slows 
down later. The sigmoidal character of the growth 
curves is established by the computation of the 
inflection point. Equation (8) computes the mass 
minfl at the inflection point. Note that for a = 0 
there is no inflection point (we then set minfl = 0). 
The data had a discernible inflection point (visible 
already directly from the data), if minfl was between 
the least and the largest of the observed masses: 
min(mi) < minfl < max(mi).

1

minfl = (a) b – a  × mmax (8)b

RESULTS

Best-fit parameters

Overall, the general BP model achieved an excel-
lent fit to the data: R-squared ranged from 64.8% 
to 100%, whereby R2 > 99% for 115 data (71% of 
161  data). The  worst fit was  observed for  cow 
No. 088. As a closer inspection of its growth data 
(Figure 2) revealed the reason for  this poor fit, 
an outlier at day 700, probably a typo. (As there 
were only four exceptional data with R2 < 90%, we 
did not take any action.) Similarly, NRMSE ranged 
from 0.3% to 10.2%, whereby NRMSE < 5% estab-
lished a good fit for 155 data (96% of 161 data). 
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cause we wanted to explore if there was a “typical” 
growth model for cattle: did the exponent pair clus-
ter near some “typical” pair? As Figure 3 indicates, 
owing to the biological differences between indi-
viduals we could not discern such a pattern. (There 
was also a high variability of the exponent pairs 
for animals of the same sex and breed.) The expo-
nent a ranged from 0 to 1.77 and exponent b varied 
between 0.01 and 48.28. 

However, we identified a new model BP(0.2, 1.75) 
that came close to describing the “typical growth 
pattern” of cattle. To this end we asked if there 
was a  three-parameter BP model that could be 
fitted well to most growth data. For each of the 
161 animals, we thereby identified all exponent 
pairs (a, b) of our search grid, where the model 
BP(a, b) insofar had an acceptable fit, as in compari-
son with the best-fit BP model its probability to be 
true was 5% or higher: ℘ ≥ 5%, using Equation (6) 
for m = 2 models. The exponent pair (0.2, 1.75) 
satisfied this condition for 131 of 161 growth data. 

Model selection 

The general BP model always had a better fit (in 
terms of SSE) than linear growth: for our 161 data, 
SSE of the BP model in the median was 45% lower  

As on a visual inspection the growth data ap-
peared to be linear (also for Figure 2), we assessed 
the fit of linear growth. It was excellent for 70 (43%) 
of the 161 data, with R2 > 99, whereby R2 ranged 
from 64.4% (for cow No. 088) to (almost) 100%. 
Further, for the linear model, NRMSE < 5% for 142 
(88%) of the data. This good fit of linear growth 
confirmed the rather linear character of the data. 

Figure 3 plots the best-fit exponent pairs of the 
161 data. We thereby identified for each animal 
the BP model with the best fit to its growth data, be-

Figure 2. Plot of the growth data of cow No. F04 and its 
regression line (the most parsimonious model), where 
owing to an outlier linear growth and other models had 
their overall worst fit
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with eight or more data points. Therefore, for the 
following comparison we removed these data. 

Figure 4 summarizes the results of this compari-
son. Linear growth (two parameters) was selected 
as the most parsimonious model for 49 (43%) of 
the 114 data and Richards model (four parameters) 
was selected for three (3%) of the data. As could 
be seen from the non-overlapping 95% confidence 
intervals, these rates were significantly higher and 
lower, respectively, than the rates of 13–17% for 
the selection of one of the three-parameter mod-
els (Brody, logistic growth, and the new model). 
The general BP model (five parameters) was se-
lected for 9% of the data (no significant difference 
from the other models, except for linear growth). 

Further, linear growth insofar most often had 
an acceptable fit, as in comparison with the oth-
er five models its probability to be true was 5% or 
higher for 70 (61%) of 114 data: ℘ ≥ 5%, assum-
ing Equation  (6) for  m  =  6 models. While this 
rate was not significantly different from the rates 
of 46–56% for an acceptable fit of the considered 
three-parameter models, the rates of 20–21% for an 
acceptable fit of the Richards model and the general 
BP model were significantly lower than the other 
four rates. 

These results confirmed the generally linear na-
ture of the data. However, linear growth was not 
suitable for all data: while linear growth achieved 
an acceptable fit for 61% of the data, the general 
BP model achieved an acceptable fit for half of the 
remaining data, covering together 81% of the data. 
If one more model was considered (namely the new 
model), an acceptable fit to 92% of the data could 
be achieved. All models, except the Richards model, 

than SSE of  linear growth. However, when we 
used the Akaike information criterion for model 
comparison, then there were only 38 (24%) of the 
161 data, where the BP model was more parsimoni-
ous (meaning: AICc of the five-parameter BP model 
was smaller than AICc of linear growth). The rea-
son was the high penalty for additional parameters: 
for the linear model, k = 3 in Equation (5) of AICc 
(counting the two linear parameters and SSE), while 
for the five-parameter BP model k = 6 (counting a, 
b, c, p, q, and SSE). This penalty was particularly 
high for data with few data points: it follows from 
Equation (5) that a model with five parameters 
(k = 6) fitted to seven or fewer data points would 
never be parsimonious. (This consideration applied 
to 16 of our data.)

In order to explore if there were any viable non-
linear alternatives to linear growth with fewer than 
five parameters, we compared six promising mod-
els: linear growth (k = 3) and the general five-pa-
rameter BP model (k = 6), plus the four-parameter 
Richards model (k = 5), its three-parameter special 
case of logistic growth (k = 4), the non-sigmoidal 
growth model of Brody (k = 4), and in addition a new 
three-parameter model BP(0.2, 1.75) that was ex-
plained previously. We confined the model com-
parison to a set of 114 data. For, as was noted above, 
the consideration of the five-parameter BP model 
was meaningful only for the 145 data with eight or 
more data points. Further, as our search for the best-
fit model stopped, as soon as the best-fit exponent 
pair was identified, for several data (where the best-
fit exponents a or b were small) we did not further 
evaluate the fit of other common models, such as lo-
gistic growth. This was an issue for 31 of the 145 data 

Figure 4. Comparison of six models 
using the Akaike information crite-
rion (AICc), based on 114 selected 
data
The figure informs about the per-
centages (dots), how often a model 
was  most parsimonious (“select”) 
and how often its fit was  accept-
able (“accept”), and it plots the 95% 
Clopper-Pearson confidence inter-
vals (lines)
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were needed if a subset of models with an acceptable 
fit to all data was desired. For, there were 14 data 
where linear growth was the sole model (amongst 
the  six considered ones) with an  acceptable fit. 
Similarly, logistic growth was the sole acceptable 
model for six data, the general BP model for five 
data, the new model for three data, the Brody model 
for one datum and only the Richards model for none. 

Genuinely sigmoidal data

As the apparent linear character of most data 
may have blurred the evaluation of the models, 
we repeated the model selection for certain data 
of a rather non-linear appearance. We identified 
57 “genuinely sigmoidal” data (35% of 161 data), 
where asymptotic mass was not excessive and where 
the inflection point was discernible (both computa-
tions based on the best-fit BP model). Whereas for 
115 data the best-fit growth curve was sigmoidal 
(exponent a > 0), the inflection point was discern-
ible for only 60 data (37%). Further, the asymptotic 
mass for the best-fit model was excessive (not sup-
ported by the data) for 76 (47%) of 161 animals. 

Amongst the above 114 data, where our opti-
mization considered also logistic growth, 42 data 
(37%) were genuinely sigmoidal. Amongst these 
42 data and six considered models, the new model 
was selected most often, for 12 (29%) of 42 data 
(95% confidence interval 16–45%), followed by lin-
ear growth (26%), logistic growth and the general 
BP model (17% each), the Richards model (7%) and 
the Brody model (5%). A different picture emerged 
when models were assessed by their acceptable fit: 
the new model performed best, with an accepta-
ble fit to 24 (57%) of the 42 data (95% confidence 
interval: 41–72%), followed by  logistic growth 
(48%), linear growth (45%), the Brody model (43%), 
the general BP model (33%) and Richards model 
(29%). Thus, even for these 42 genuinely sigmoidal 
data a model without inflection point (linear growth 
or Brody model) was selected as most parsimonious 
for 13 data. Further, for 25 data the linear model 
or the Brody model (or both) had an acceptable 
fit. Consequently, amongst 114 data we found 17 
(15%) where only sigmoidal models had an accept-
able fit (95% confidence interval: 9–23%). These 
data included representatives of all three types 
(beef, traditional, and dairy) of breeds. (The data 
were about four Aberdeen Angus bulls, one male 

and two female Murbodner calves, two Murbodner 
bulls, three Fleckvieh bulls, two Holstein bulls, and 
three Holstein cows.) 

DISCUSSION AND CONCLUSION

Do size-at-age data support the  hypothesis 
that the biological growth of cattle is sigmoidal? 
We studied this question on 161 data that we ob-
tained from keepers with commercial or scientific 
interests. From an initial visual inspection, most 
data appeared to grow linearly in a first approxima-
tion. Indeed, for 43% of the data the fit by the linear 
regression line was excellent (R2 > 99%). The likely 
reason was restrictions in data collection (Renner-
Martin et al. 2018). For instance, cattle breeders 
weighed their calves from birth, but they sold them 
before they reached their adult mass. Keepers 
who purchased the calves for fattening recorded 
the weight increases, but they were unaware of the 
previous life history. Thus, the data did not extend 
over the  whole lifetime of the animals. Rather, 
they covered small periods of life, for which linear 
growth modelling was sufficient for most data. It 
follows that for a typical commercial cattle keeper 
linear growth modelling may suffice for most prac-
tical purposes. However, this also means that such 
data may be unsuitable to estimate the mature mass. 

The general BP model improved the linear fit 
considerably; R2 > 99% for 71% of the 161 data. 
Further, for 71% of  the data the BP model with 
the best fit was sigmoidal, because there was an 
inflection point. However, only for 35% of the data 
this inflection point was discernible, and the as-
ymptotic mass was not excessive (genuinely sigmoi-
dal data). Further, in terms of parsimony the better 
fit by the BP model did not in general justify the use 
of its additional parameters. Most of the data had 
a non-sigmoidal characteristic insofar, as linear 
growth or the Brody model of bounded exponential 
growth achieved an acceptable fit to the data (5% 
probability to be true), when the general BP model, 
Richards model, Brody model, logistic growth, lin-
ear growth, and a new model were compared. We 
could identify only a small core of data (15%) where 
sigmoidal models were indispensable. 

Amongst sigmoidal models, the Richards model 
is commonly used for modelling the biological 
growth of cattle (Nogales et al. 2017): a Google 
search identified 18 800 publications since 2011 
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with the key words cattle and Richards model. 
However, for  our data the  performance of  the 
Richards model was surprisingly poor (Figure 4). 
A reason for the preference of Richards model over 
the simpler three-parameter models (e.g. logistic 
growth) is the more reliable estimation of the ma-
ture weight (asymptotic mass) due to the additional 
model parameter (Speidel 2011; Upperman 2021). 
However, this requires a high density of weight re-
cords. Our data suggest that in comparison with 
the Richards model, its simpler special case of lo-
gistic growth in general was good enough, when 
parsimony was  considered: owing to  the addi-
tional parameter, Richards model always achieved 
a  better fit (smaller SSE) than logistic growth, 
but in general this improvement of AICc was off-
set by the penalty for the additional parameter. 
For 37 data, where logistic growth achieved an ac-
ceptable fit, the fit by Richards model was not ac-
ceptable in terms of AICc. (For only eight data, 
Richards model was acceptable, but logistic growth 
was not.) The main reason was the relatively small 
number of weight records, because the last term 
in Equation (5) was particularly high for individu-
als with few size-at-age data. However, datasets 
with large numbers of weighings of each individual 
are scarce for large animals, such as cattle. Further 
(Figure 3), the best-fit exponent pairs were in gen-
eral remote from the  line a = 1, which collects 
the exponent pairs of the Richards model.

For literature data about sheep and goats there 
was  a  similar observation about the  difficulty 
to identify sigmoidal growth data (Brunner and 
Kuhleitner 2020). There the Brody model was out-
standing. By contrast, the present data identified 
a certain sigmoidal model as outstanding in the fol-
lowing sense: owing to the variations of the growth 
pattern between the individual animals, we could 
not identify a “universal model” for the biologi-
cal growth of cattle. However, we identified a new 
three-parameter model, BP(0.2, 1.75), that came 
close to being universal: amongst the above-men-
tioned six models it was the most parsimonious 
model for 29% of the genuinely sigmoidal data and 
its fit was acceptable for 57% of these data. 
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