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Abstract: The paper demonstrates the dependability of assignment testing in the identification of an appropriate
breed to monitor comprehensive genetic information from molecular markers to analyse the collection of real
population data covering 22 horse breeds registered in the Czech Republic, including native breeds and genetic
resources. If 17 microsatellites are used, the mean number of alleles per locus corresponds to 10.4. The count
of alleles at the individual loci ranges between five (HTG07) and 17 (ASB17). The loci ASB02, ASB23, HMS03,
HTGI10, and VHL20 exhibit the highest gene diversity and observed heterozygosity (both above 80%), with
the mean value of 0.77 and 0.73, respectively. The moderate total inbreeding coefficient (5.2%) is estimated
across all the loci and breeds. The levels of apparent breed differentiation span from zero between the Czech
Warmblood and Slovak Warmblood to 0.15 between the Shetland Pony and Standardbred. The phylogenetic
breed relationships are revealed via the NeighbourNet dendrogram constructed from Reynolds’ genetic dis-
tances, which clearly separate the Coldblood draught, Hot/Warmblood, and Pony horses. Our results reveal
that the Bayesian approach (the Rannala and Mountain technique) provides the most intensive prediction power
(83.6%) out of the GENECLASS tools and that the Bayes Net algorithm exhibits the best efficiency (78.4%)
from the WEKA machine learning workbench options, considering the use of the five-fold cross validation
technique. The algorithms could be trained on large real reference data sets, and thus there appears another
viable perspective for machine learning in horse ancestry testing. In this context, it is also important to stress
the fact that innovated computational tools will potentially lead towards structuring a novel web server to
allow the identification of horse breeds.
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Machine learning (ML), also known as statisti-
cal learning, is a subfield of artificial intelligence
dedicated to the study of prediction and infer-
ence algorithms. An insight into how such instru-
ments can be applied to solve pressing problems
within animal science was proposed in a recent
study by Morota et al. (2018). Importantly, ML will
have an increasing impact on breeding as unstruc-
tured genomic and phenotype data expand. Further,
the data sets in animal breeding have traditionally
been larger than those in many related contem-
porary biological sciences, and the development
of efficient algorithms has embodied a major and
relevant activity in the field (Perez-Enciso 2017).
Although an operational methodology could con-
stitute a valuable tool for conservation and breed
improvement programs, the verification and vali-
dation of population assignment methods are still
required; moreover, the real-world performance
of assignment tests that utilize machine learning
remains an unexplored problem, despite the wide
popularity of these testing means.

Livestock breeds have been formed through cen-
turies of human and natural selection to fit a wide
range of environmental conditions and human
needs. At this point, let us note that all Warmbloods
from former Czechoslovakia originated during
the Habsburg Monarchy and Austro-Hungarian
Empire, and their development involved multiple
gene pools originating from Czech, Polish, Austrian
and Hungarian stud farms. In Moravia, the dis-
cussed breed was a steady type, denoted as the
Moravian Warmblood between 1920 and 1971.
Unfortunately, Western European breeds were
imported in 1970, and Czech Warmblood breeds
became significantly influenced by Trakehner,
along with other, mostly German, and later on
also French and Dutch Warmblood breeds.
Crossbreeding produces the genetically very het-
erogeneous population of the Czech Warmblood,
which has not resulted in a stable type to date.
Since 1971, the Moravian Warmblood has been
included in the stud book of the Czech Warmblood
but with a specific focus on character and stature.
In 1996, a group of enthusiasts started their ef-
forts to save and regenerate the remaining horses
of this origin. Eight years later, the authorities re-
stored the Moravian Warmblood stud book, there-
by recognizing the breed’s existence. By the end
of the 20" century, the Kinsky Horse had been
largely absorbed into the Czech Warmblood, too.
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The stud book of the Kinsky Horse was recognised
by the Ministry of Agriculture of the Czech Republic
only recently, in 2005. Predictably, the historical
development of the Slovak Warmblood markedly
resembled that of the Czech native Warmbloods.
After the dissolution of Czechoslovakia, the stud
book of the Slovak Warmblood bred in the Czech
Republic was founded (in 1995), under the aus-
pices of the Ministry of Agriculture. Some of the
animals are nevertheless registered in both stud
books (for the Czech and Slovak Warmbloods).
The above-mentioned events probably affected
the composition of the gene pools in Czech-raised
horse breeds. Breed descriptors were developed
to identify a breed, but these cover only “pure
breed” or true to breed animals, excluding unde-
fined or admixed populations. Molecular marker
polymorphisms revolutionised breed identification
through using small samples of biological tissue
or germplasm, including specimens of blood, em-
bryos, ova, semen, and carcass that do not show any
evident phenotype (Iquebal et al. 2014). A breed
signature using single nucleotide polymorphism
(SNP) or microsatellite DNA markers has the po-
tential to discriminate between pure breeds and
breed crosses, an aspect important for population
management and the conservation of animal ge-
netic resources (Bjornstad and Roed 2002).

Most breed registries require DNA testing to ver-
ify the animal identity and parentage before reg-
istration or breeding. The International Studbook
Committee (ISBC) relies on the International
Society of Animal Genetics (ISAG). The DNA
markers used by the Czech laboratories are based
on the internationally recognised microsatellite
testing panel operated by the ISAG; moreover, they
have been endorsed by the Food and Agriculture
Organization of the United Nations (FAO) as a tool
to support diversity studies (Funk et al. 2020).

In the above-outlined sense, this research paper
is designed to demonstrate, extensively and in de-
tail, the dependability of the assignment success
rate; the task is then performed by using differ-
ent methods for selecting the appropriate breed.
An allelic microsatellite profile was established
to determine the distance-based phylogenetic
relationships between the investigated Czech-
registered horse breeds. The WEKA machine
learning workbench, equipped with a broad col-
lection of machine learning algorithms and data
pre-processing techniques, was used to classify
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and predict the desired indicators in the individual
breeds. We also analysed the standard assignment
methods (Bayesian, frequency, and distance) using
GENECLASS and STRUCTURE, one of the most
extensively used individual assignment programs
available for analysing microsatellites (Pritchard
etal. 2000); the software is also based on a Bayesian
methodology. Generally, our study provides inter-
esting results relevant to different assignment-
based approaches to estimate breed identification
in horses with stud books maintained in the Czech
Republic; these outcomes may also find application
in the building of a novel web server.

MATERIAL AND METHODS
Experimental data set

We collected applicable information relating
to 7 588/1 742 (full/randomly reduced) individu-
als; this step was carried out via employing nuclear
microsatellite DNA polymorphisms to describe
22 horse breeds for which stud books are avail-
able in the Czech Republic: THO = Thoroughbred
(214/100), ARAB = Arabian (100/100), CZW =
Czech Warmblood (3 295/100), CMB = Czech-
Moravian Belgian Horse (127/100), CSP = Czech
Sport Pony (74/74), HAF = Haflinger (243/100),
HUC = Hucul (387/100), IRI = Irish Cob (43/43),
STA = Standardbred (142/100), KIN = Kinsky
Horse (100/100), LIP = Lipizzan (10/10), MIN =
Miniature Horse (24/24), MOW = Moravian
Warmblood (36/36), NOR = Noriker (83/83),
SHA = Shagya (180/100), SHP = Shetland Pony
(95/95), SNOR = Silesian Noriker (104/100), SLW =
Slovak Warmblood in the Czech environment
(1888/100), KLA = Old Kladruber Horse (266/100),
TRA = Trakehner (32/32), WPB = Welsh Part Bred
(87/87), and WPC = Welsh Pony and Cob (58/58).
Eight of these are unique native populations (CZW,
MOW, KIN, CSP, CMB, HUC, KLA, and SNOR),
and four rank among the genetic resources (CMB,
HUC, KLA, and SNOR).

Genomic DNA isolation

The total genomic DNA was extracted from
the blood, hair roots, and semen straws, using
QIAamp® Blood/Tissue Kit (Qiagen, Valencia,
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CA, USA); JETQUICK Blood/Tissue DNA Spin Kit
(Genomed GmbH, Lohne, Germany); or Geneaid™
DNA Isolation Blood/Tissue Kit (Geneaid Biotech
Ltd., Taipei, Taiwan), invariably according to the
manufacturers’ instructions. The extracted DNA
was visualised on 1% tris-acetate-EDTA (TAE) aga-
rose gel stained with ethidium bromide. The sam-
ples were then denatured at 95 °C for 7 min and
kept at —20 °C until the microsatellite analysis.

Allele detection and genotyping

Seventeen dinucleotide repeat microsatellite
loci — AHT04, AHTO0S, ASB02, ASB17, ASB23,
UCDEQ425, HMS01, HMS02, HMS03, HMSO06,
HMS07, HTG04, HTG06, HTG07, HTG10, LEX3,
and VHL20 — dispersed over 13 different chromo-
somes were subjected to an analysis. All microsatel-
lite markers except HMS01 and the X-chromosomal
LEXO03 are among those recommended by the FAO
for diversity studies. The DNA samples were di-
luted to a working concentration of 1-10 ng/ul
by adding an appropriate amount of sterile wa-
ter. The co-amplification of the 17 microsatel-
lites was performed via a multiplex PCR reaction
using the commercially available StockMarks®
for Horses 17-Plex Genotyping Kit (Applied
Biosystems, Foster City, CA, USA) and Equine
Genotypes™ Panel 1.1 (Thermo Fisher Scientific
Inc., Waltham, MA, USA) as recommended by the
manufacturers. The PCR reactions were carried
out employing a GeneAmp® PCR System 9700 or
a Veriti® Thermal cycler (Thermo Fisher Scientific
Inc., Waltham, MA, USA). Each 1 pl of the PCR
product and 0.5 pl of a GeneScan™ 500 LIZ™ dye
Size Standard (Life Technologies, Carlsbad, CA,
USA) were loaded in 11.5 pl of Hi-Di™ Formamide
(Life Technologies, Carlsbad, CA, USA). The sam-
ples were then denatured at 95 °C for 5 min and
cooled down for another 5 minutes. The genotype
scoring was performed on an ABI PRISM 310™
Genetic Analyzer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) with five-colour detection via
fluorescent fragment analysis and then detected
using dedicated software packages. The allele size
was determined in bp by comparing the length with
an internal-lane size standard. An alphabetical no-
menclature was used for the allele size designation
in accordance with the ISAG. Further, a sample
of known genotypes from the ISAG comparison
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test was employed as the reference and positive
control to standardize the allele sizes in every run.
The laboratory where our research was conducted
is regularly accredited according to the ISO/IEC
17025 standard and has been involved in the ISAG
comparative testing since 2001.

Statistical analyses

We used PowerMarker v3.25 (https://brcweb-
portal.cos.ncsu.edu/powermarker/index.html) to
compute the frequencies and count of the alleles,
polymorphic information content (PIC), observed
heterozygosity, expected heterozygosity (or gene
diversity), and f (total inbreeding coefficient due
to subdivision). The Reynolds’ genetic distances
(Dgr), a measure based on pairwise population dif-
ferentiation (Fgr) values [Dg = -In(1 - Fgr)], were
computed for the Czech registered breeds using
the same software and visualised by a NeighbourNet
dendrogram via SplitsTree v4.13.1 (http://www.
splitstree.org). The Hardy-Weinberg equilibrium
test was performed with the Genepop v4.2.1 soft-
ware (https://kimura.univ-montp2.fr/~rousset/
Genepop.htm). A global test subsuming the diverse
loci and populations, i.e., the multisample score test,
was used together with the hypothesis of the hete-
rozygote deficit and excess. When carrying out mul-
tiple tests, we adjusted the standards of significance
via the sequential Bonferroni method. The loci were
examined in terms of null alleles, large allele drop-
out, and stutter peaks in MICRO-CHECKER v2.2.3
(http://www.nrp.ac.uk/nrp-strategic-alliances/elsa/
software/microchecker/) at a 95% confidence in-
terval, utilizing 10 000 permutations according
to Brookfield’s and Chakraborty’s approach.

The dataset was narrowed at random by MS
Excel 2016 to 100 or fewer individuals per breed
(n = 1742) before using the program FSTAT v2.9.4
(http://www2.unil.ch/popgen/softwares/fstat.htm).
The same program was exploited to estimate
the linkage disequilibrium (LD) between pairs
of loci and the fixation index Fgy (reduction in the
heterozygosity of a subpopulation due to random
genetic drift). Low Fsr values denote similarity be-
tween the allele frequencies within each population.

The DNA signature of a breed is a “statistical
signature” based on the allele type, relative fre-
quency, and its relative distribution. The probabil-
istic assignments of animals to the pre-determined
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populations were tested through several processes,
specified as follows:

1) distance-based approaches — Nei’s (1972)
standard distance, Nei’s (1973) minimum distance,
Nei et al’s (1983) D, distance, Cavalli-Sforza and
Edwards’ (1967) distance, and Goldstein et al’s
(1995) distance;

2) the frequency-based method by Paetkau et al.
(1995), which assigns an animal to the popula-
tion where the individual’s genotype will occur
the most probably;

3) the Bayesian statistics-based technique
of Rannala and Mountain (1997) and Baudouin and
Lebrun (2001), incorporated in the GENECLASS
v2.0.h software (http://www1l.montpellier.inra.fr/
CBGP/software/GeneClass/).

The WEKA v3.8.1 machine learning software (htt-
ps://www.cs.waikato.ac.nz/ml/weka/) with a large
corpus of machine learning algorithms was em-
ployed in the allelic data to predict and classify
breeds registered in the Czech Republic, including
Czech native breeds and genetic resources. Four
classification methods were used: Bayes Network
and Naive Bayes (probabilistic classification algo-
rithms); JRip (rule learning algorithm); and multilay-
er perceptron (MLP) as a class of the artificial neural
network (backpropagation as an iterative algorithm
based on gradient descent). An algorithm is supe-
rior to a different one if it has more correctly and
less incorrectly classified instances. The five-fold
cross validation technique with default parameters
was used to derive the classification performance
of each option. At the final stage, the breed assign-
ment was assessed by using Bayesian clustering
methods in STRUCTURE v2.3.4 (Pritchard et al.
2000). An admixture model and a correlated al-
lele frequency model with default parameters were
used to analyse the data set. Ten independent runs
were performed for number of populations K =
22, with the burn-in period of 50 000 steps, and
followed by 150 000 Markov chain Monte Carlo
iterations. The CLUMPP v1.1.2 (Jakobsson and
Rosenberg 2007) was used to maximize the measure
of similarity in the Q-matrices of the ten replicates.

We employed the Circos visualization software
(Krzywinski et al. 2009), which exploits a circular
ideogram, to facilitate global distribution of the
prediction power detected in each horse breed via
GENECLASS, WEKA, and STRUCTURE tools and
arising from a comparison of the breeds’ micros-
atellite data.
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RESULTS AND DISCUSSION

Genetic variability among the loci

Genetic diversity is a necessary precondition
for the successful and sustainable breeding of a pop-
ulation; one of the goals of population management
therefore consists in maintaining genetic diver-
sity at a high level, with inbreeding suppressed.
The statistics overview relating to marker loci ana-
lysed across the data set (n = 7 588) is presented
in Table 1. The mean number of alleles per locus
was 10.4. The count of alleles at the loci ranged
between five (HTG07) and 17 (ASB17). Certain
alleles exhibited the highest occurrence across all
the tested samples: UCDEQ425 — allele N (0.463),
HMSO01 — allele M (0.451), HMS06 — allele P (0.444),
HTGO04 - allele M (0.435), and HTGO07 — allele O
(0.468). The observed heterozygosity ranged from
0.49 (LEX03) to 0.85 (HMS03 and ASB23). The loci
ASB02, ASB23, HMS03, HTG10, and VHL20
showed the highest gene diversity and observed
heterozygosity (both above 80%), with the mean
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values of 0.77 and 0.73, respectively. The LEX03
locus yielded the highest inbreeding coefficient
value (f= 0.414) due its localization on the X chro-
mosome. Further, a moderate total inbreeding
coefficient (f = 0.052) was estimated across all
the loci and breeds. The observed heterozygosity
had a strong negative correlation (Pearson’s coef-
ficient of r = =0.75, P = 0.000 526) with the total in-
breeding due to subdivision. The number of alleles
was moderately positively correlated with the gene
diversity and the polymorphic information content,
respectively (r = 0.71, P < 0.01). Significant interac-
tion of these two factors was found previously (Fan
et al. 2005).

MICRO-CHECKER did not reveal the presence
of null alleles in any of the populations, and neither
evidence of scoring errors due to stuttering nor
aproof of large allele dropout were found. The horse
breeds examined in terms of each locus via het-
erozygote deficit and excess exhibited genotypic
frequencies in agreement with the Hardy-Weinberg
equilibrium. The tests focused on the LD between
all pairs of loci across all the populations, and they
were carried out by using FSTAT; no significant

Table 1. The statistics summary for the marker loci in the horse breeds with stud books kept in the Czech Republic

(n=17588)

Locus Chromosome MAF  Genotype No. Allele No.  Gene diversity Heterozygosity = PIC f
AHTO04 24 0.300 50 10 0.773 0.751 0.738 0.029
AHTOS5 8 0.236 36 0.804 0.793 0.775 0.014
HMS01 15 0.451 27 0.635 0.622 0.566 0.022
HMS02 10 0.358 51 11 0.771 0.741 0.740 0.040
HMS03 0.249 38 11 0.818 0.854 0.793  -0.044
HMS06 0.444 22 0.713 0.687 0.674 0.037
HMS07 0.317 35 0.796 0.758 0.768 0.048
HTGO04 9 0.435 27 0.680 0.630 0.627 0.073
HTGO06 15 0.328 35 10 0.736 0.679 0.689 0.078
HTGO07 4 0.468 15 5 0.666 0.640 0.609 0.038
HTGI10 21 0.252 62 11 0.839 0.825 0.819 0.017
VHL20 30 0.244 53 11 0.834 0.815 0.814 0.023
ASBO2 15 0.250 60 13 0.832 0.803 0.811 0.035
ASB17 0.275 106 17 0.828 0.798 0.808 0.036
ASB23 0.226 66 15 0.830 0.845 0.807  -0.019
UCDEQ425 28 0.464 51 11 0.714 0.693 0.681 0.029
LEX03 - 0.229 64 12 0.844 0.495 0.826 0.414
Mean - 0.325 46.941 10.412 0.771 0.731 0.738 0.052

f=moment estimator or maximum likelihood estimator of within-population inbreeding coefficient; MAF = major allele

frequency; PIC = polymorphic information content
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genotypic disequilibrium was found (P > 0.05 for all
after Bonferroni corrections).

Breed relationships

The pairwise population differentiations (Fsr)
and Reynolds’ Dy genetic distances revealed close
relationships between some of the populations.
The calculated Dy distances (# = 7 588) and paired
Fgrvalues (n = 1742) between 22 Czech-registered
breeds estimated from 17 microsatellite loci are
presented in Table S1 in electronic supplementary
material (ESM).

In most cases, the Dy showed the same pattern
as the Fs7. The Reynolds’ genetic distances pointed
to close relationships as regards the CZW and SLW
breeds (Dg = 0.002 7). Further, the members of the
combination SNOR-NOR exhibited the highest
connectivity to each other (Di = 0.010 6). Common
historical origin or past breeding strategies possi-
bly led to genetic admixture occurring as a result
of the relatively intensive gene flow in these breeds.
By contrast, we determined the pair SHP-LIP
(Dgr = 0.167 6) to be the most distinct one in terms
of the Czech-registered breeds. The genetic differ-
entiation among the SHP and the STA (Fgr =0.151 1)
was the highest from all the breed combinations.
Zero Fgr value was detected between the SLW
and CZW, with these breeds exhibiting the high-
est similarity. We found that 35 values (15%) of the
231 pairwise Fgr indices were < 0.05. The breeds’
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relationships were analysed also via NeighbourNet
visualization of the Reynolds’ Dy genetic distances.
A NeighbourNet dendrogram of the horse breeds
with stud books maintained in the Czech Republic
was designed (Figure 1). The network topology
clearly separated the Cold-blooded draught, Hot/
Warm-blooded, and Pony horses.

Breed assignment

We studied the assignment success in 22 horse
breeds with stud books kept in the Czech Republic
(n = 1 742), including the Czech native popula-
tions (n = 710) and genetic resources (n = 400).
Eight different methods (Bayesian, frequency, and
distance) from the GENECLASS software, four
classifiers (Bayes Network, Naive Bayes, JRip, and
multilayer perceptron) associated with WEKA, and
STRUCTURE software were all used in the data set
to facilitate the horse breed identification. Applying
different machine learning algorithms to a real horse
database may prove useful for comparative breed
analysis. The X-linked locus LEX03 was not included
in the following breed assignment analyses.

Table S2 in ESM summarizes the individual as-
signment success rates for each horse breed, ob-
tained by using eight different assignment methods
in GENECLASS. The Bayesian, frequency, and Nei-
D, distance techniques performed more or less simi-
larly. The Pearson correlation analysis demonstrated
only a weak relationship between the sample size

Figure 1. The neighbour network built from
the Dy distances between 22 horse breeds regis-
tered in the Czech Republic, including the Czech
native breeds and genetic resources (n = 7 588)
ARAB = Arabian; CMB = Czech-Moravian Belgian
Horse; CSP = Czech Sport Pony; CZW = Czech
Warmblood; HAF = Haflinger; HUC = Hucul; IRI =
Irish Cob; KIN = Kinsky Horse; KLA = Old Kladru-
ber Horse; LIP = Lipizzan; MIN = Miniature Horse;
MOW = Moravian Warmblood; NOR = Noriker;
SHA = Shagya; SHP = Shetland Pony; SLW =
Slovak Warmblood in the Czech environment;
SNOR = Silesian Noriker; STA = Standardbred,;
THO = Thoroughbred; TRA = Trakehner; WPB =
Welsh Part Bred; WPC = Welsh Pony and Cob
The eight unique native breeds inclusive of the
endangered gene reserve (CMB, HUC, KLA, and
SNOR) are indicated in red
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and the assignment accuracy. The overall percentage
of correct assignment for the 14 different methods
in the 22 registered breeds is summarised in Table 2.
For the breeds registered in the Czech Republic,
the breed-wise accuracy in GENECLASS and
WEKA ranged from 83.6% to 35.8% and from 78.4%
to 46.2%, respectively. Our results discussed above
indicate that the Bayesian method (the Rannala
and Mountain approach) provided a prediction
power superior to the other GENECLASS meth-
ods and that the Bayes Net, then, surpassed all
similar algorithms within the WEKA ML fam-
ily. Similarly, high prediction power was obtained
from the STRUCTURE. To ensure such a capabil-
ity, however, we had to supply a priori information
about the sample origin; without these data, there
was only 58.03% accuracy yielded from the Bayesian
approach that assigns individuals to source popu-
lations or facilitates the proportional assignment
of ancestry to multiple (22 in this case) populations.
Very large data sets are highly challenging for clus-
ter analyses, especially when populations with com-
plex genetic histories are investigated (Funk et al.
2020). STRUCTURE works best with a small num-
ber of discrete populations (Pritchard et al. 2000),
but the performance with large data sets was also
evaluated (e.g. Putnova et al. 2019; Funk et al. 2020).

The confusion matrices to show the predic-
tion power of these three best performing tools,
as calculated through GENECLASS, WEKA, and
STRUCTURE, are proposed in Tables S3, S4, and S5
in ESM. Circular breed data visualization was car-
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ried out to allow individual identification and anal-
ysis of the similarities and differences arising from
comparison of the microsatellite variation between
the pairs of breeds. Summarizing the distribution
of the assignment success, appropriate Circos plots
were created for each of the confusion matrices
(Figures 2, 3 and 4).

Breed assignment tests can be performed by
means of diverse statistical tools based on the ge-
netic distances and differences in allelic frequencies.
According to Cornuet et al. (1999), the procedures
exploiting the Bayesian approach yield the best re-
sults, but the populations must be in the Hardy-
Weinberg and linkage equilibria; this necessity,
however, can be eliminated by distance-based
methodologies. Factors having an impact on the in-
dividual assignment success, such as the number
and divergence of populations, sample size, and
number of loci, were assessed from actual or simu-
lated data and are widely reported in the literature
(Bjornstad and Roed 2002; Koskinen 2003; Fan
et al. 2005; Talle et al. 2005; Putnova and Stohl
2019; Funk et al. 2020).

In our study, the Goldstein §u? distance and
the neural network MLP model based on gradient
descent algorithm exhibit overall inferior capabilities
in breed classification. However, the performance
of each method varied, with the accuracy affect-
ed by genetic differentiation between the breeds,
the number and allelic diversity of loci, the propor-
tion of sampled animals, and the number of baseline
populations (Bjornstad and Roed 2002; Koskinen

Table 2. The assignment accuracy of 14 different methods for 22 horse breeds registered in the Czech Republic

Software Method Assignment accuracy (%)
STRUCTURE v2.3.4 Using prior population information 89.74
GENECLASS v2.0.h Bayesian method — Rannala and Mountain approach 83.59
GENECLASS v2.0.h Bayesian method — Baudouin and Lebrun approach 80.69
GENECLASS v2.0.h Frequency method 80.39
WEKA v3.8.1 Bayes Network 78.36
GENECLASS v2.0.h Nei’s D, distance 77.55
WEKA v3.8.1 Naive Bayes 75.13
GENECLASS v2.0.h Nei’s standard distance 73.32
GENECLASS v2.0.h Cavalli-Sforza and Edwards’ distance 73.30
GENECLASS v2.0.h Nei’s minimum distance 73.13
STRUCTURE v2.3.4 Using only genetic information 58.03
WEKA v3.8.1 JRip 50.11
WEKA v3.8.1 Multilayer perceptron 46.21
GENECLASS v2.0.h Goldstein’s 8y distance 35.81
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Figure 2. A Circos plot displaying
the variation in the microsatellite struc-
ture and summarizing the genetic pre-
diction power of the Bayesian method
(the Rannala and Mountain approach),
as calculated by GENECLASS for each
Czech-registered horse breed (1 = 1 742;
accuracy 83.6%)

ARAB = Arabian; CMB = Czech-Mora-
vian Belgian Horse; CSP = Czech Sport
Pony; CZW = Czech Warmblood; HAF =
Haflinger; HUC = Hucul; IRI = Irish
Cob; KIN = Kinsky Horse; KLA = Old
Kladruber Horse; LIP = Lipizzan; MIN =
Miniature Horse; MOW = Moravian
Warmblood; NOR = Noriker; SHA =
Shagya; SHP = Shetland Pony; SLW =
Slovak Warmblood in the Czech environ-
ment; SNOR = Silesian Noriker; STA =
Standardbred; THO = Thoroughbred;
TRA = Trakehner; WPB = Welsh Part
Bred; WPC = Welsh Pony and Cob

Figure 3. A Circos plot displaying
the variation in the microsatellite
structure and summarizing the genetic
prediction power of the Bayes Net-
work classifier, as calculated by WEKA
for each Czech-registered horse breed
(n =1 742; accuracy 78.4%)

ARAB = Arabian; CMB = Czech-Mora-
vian Belgian Horse; CSP = Czech Sport
Pony; CZW = Czech Warmblood; HAF =
Haflinger; HUC = Hucul; IRI = Irish
Cob; KIN = Kinsky Horse; KLA = Old
Kladruber Horse; LIP = Lipizzan; MIN =
Miniature Horse; MOW = Moravian
Warmblood; NOR = Noriker; SHA =
Shagya; SHP = Shetland Pony; SLW =
Slovak Warmblood in the Czech environ-
ment; SNOR = Silesian Noriker; STA =
Standardbred; THO = Thoroughbred;
TRA = Trakehner; WPB = Welsh Part
Bred; WPC = Welsh Pony and Cob

2003; Fan et al. 2005; Talle et al. 2005). The assign-  of source breeds (Putnova and Stohl 2019). As for
ment success increased with rising numbers ofloci, the fourteen assignment methods used herein,
higher levels of divergence, and lower amounts most animals were correctly classifiable into their
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populations of origin. Regarding the Czech native
breeds, the best individual assignment results were
achieved in the HUC (98%), KLA (98%), and CMB
(97%). Conversely, and as expected, a lower breed as-
signment level was obtained in the CZW (35%) and
SLW (36%). The CZW and the SLW exhibit higher
admixture between each other, as there has been
a major exchange between these two breeds in re-
cent years. Using the Bayesian statistical technique,
Rannala and Mountain (1997) and Van de Goor et al.
(2011) obtained an assignment accuracy for the
Welsh (82.2%) and Warmblood breeds (85.4%) simi-
lar to our data (80.2% in the Welsh and 80.1% in the
Warmblood breeds).

Out of the 1 742 individuals considered, 83.6/
81.5/94.8% were correctly assigned to their popula-
tions of origin with respect to the Czech registered
breeds/native breeds/gene reserves (the Rannala
and Mountain approach); by another definition,
the indicated values correspond to the average
assignment values in the relevant groups. When
the same technique was applied to 22 breeds in-
cluding eleven breeds of Warmblood, seven of Pony,
and four of Cold-blooded horses, the following
respective breed identification accuracies were
achieved: 80.1%, 86.2%, and 88.7%. Thus, the high-
est breed genomic prediction accuracy was found
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Figure 4. A Circos plot displaying
the variation in the microsatellite struc-
ture and summarizing the genetic pre-
diction power of the Bayesian clustering
method, as calculated by STRUCTURE
for each Czech-registered horse breed
(n =1 742; accuracy 58.03%)

ARAB = Arabian; CMB = Czech-Mora-
vian Belgian Horse; CSP = Czech Sport
Pony; CZW = Czech Warmblood; HAF =
Haflinger; HUC = Hucul; IRI = Irish
Cob; KIN = Kinsky Horse; KLA = Old
Kladruber Horse; LIP = Lipizzan; MIN =
Miniature Horse; MOW = Moravian
Warmblood; NOR = Noriker; SHA =
Shagya; SHP = Shetland Pony; SLW =
Slovak Warmblood in the Czech environ-
ment; SNOR = Silesian Noriker; STA =
Standardbred; THO = Thoroughbred;
TRA = Trakehner; WPB = Welsh Part
Bred; WPC = Welsh Pony and Cob

in the Coldblood horses. Overall, the Bayesian al-
gorithms implemented in WEKA and GENECLASS
outperformed the other approaches. These statisti-
cal tools, inclusive of machine learning, could be
employed to assess the breed traceability system.

Similarly to our study, relevant papers by Fan et al.
(2005) and Talle et al. (2005) associate the top percent-
ages of correct assignment with the Bayesian, gene
frequency, and distance-based methods. However,
when using a ten loci combination, Koskinen (2003)
and Fan et al. (2005) reported slightly higher values
in dogs and pigs, respectively. Based on multilocus
genotypes, the Bayesian method provided 98% assign-
ment success in pigs. Most strikingly, the Bayesian
genetic assignment analysis did not indicate any gene
flow pattern between the assessed canine breeds,
as all of the individuals were 100% assigned to their
reference populations. In cattle, the assignment suc-
cess rate ranged from 55% to 70%, involving eight
purebred populations and 27 loci (Talle et al. 2005).
Nevertheless, the assignment accuracy value for MLP
observed in this study (46.2%) is not in good agree-
ment with the value found by Iquebal et al. (2014)
for goat breeds (96.6%).

Today, well-defined breed descriptors based on
morphology are used to categorize breeds. These
phenotypic tools have certain limitations, as they
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cannot identify semen, ova, embryo, or a breed
product; moreover, they are unable to predict
a breed in an admixture, namely, a non-descriptive
population (Iquebal et al. 2014).

In the year 2000, Pritchard, Stephens, and
Donnelly released a model-based clustering meth-
od (Pritchard et al. 2000) that was to become known
as STRUCTURE, one of the most important and
widely recognised software tools to serve the given
purpose. A clustering, microsatellite-based analysis
of large datasets is nevertheless very time-intensive,
and we thus employed STRUCTURE only margin-
ally. The software finds use especially in off-line
analyses; conversely, the algorithms contained
in WEKA and GENECLASS are trainable on big
data accessible in laboratories, can be utilised
for on-line web applications, and the assignment
of an individual to a breed does not require ex-
cessive time. Future work should focus on testing
how a higher number of loci (microsatellites and/or
SNP) would increase the breed assignment success,
and whether the change of the large-scale cluster
analysis of populations into smaller units reflecting
the horse breed history performs better.

In horses, the population structure resulting
from selective breeding is characterised by high
interbreed and low intrabreed genetic diversity,
and reflected by a huge array of morphological and
behavioural traits (Librado et al. 2016). Using an-
cient genomes, Fages et al. (2019) found that while
past horse breeders maintained diverse genetic
resources for millennia after they first domesti-
cated the horse, this diversity dropped by ~16%
within the last 200 years. Modern breeding practic-
es have changed the natural evolutionary trajectory
of horses by favouring the reproduction of a lim-
ited number of animals showing traits of interest.
Reduced breeding stocks hampered the elimination
of deleterious variants by means of negative selec-
tion, ultimately inflating mutational loads (Orlando
and Librado 2019). The authors confirm that del-
eterious mutations segregated at low frequencies
during the last 3 500 years have only spread and
incremented their occurrence in the homozygous
state during modern times, owing to inbreeding.

We hope that the genetic monitoring cycles out-
lined herein will continue in the future to preserve
the unique breeds kept in the Czech Republic.
The genetic diversity and assignment accuracy
found in domestic horse breeds allow farmers to de-
velop new characteristics in response to changes
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in the environment, diseases, or market conditions.
Microsatellite DNA genetic testing instruments are
available to advantageously facilitate the correct
classification of different groups and to potential-
ly assist managers in the decision-making steps
that relate to breeding and registration, mainly
in genetically differentiated breeds.

CONCLUSION

Microsatellites and/or SNP chip-based data
are usable in horse breed ancestry testing. While
breed identification in purebred horses can be
performed rather easily, determining breed con-
tributions in crossbred individuals embodies
a significantly more complex problem. In Czech
husbandry practices, the animals are not tested
for breed confirmation, because such a task re-
quires additional testing, and certain limitations
are imposed on breed composition tests to render
them more informative and accurate. As regards
the functional strategies, this paper shows that the
WEKA Bayes network classification algorithms,
despite not being centred on genetic analyses,
exhibit results comparable to those provided
by GENECLASS. At dedicated laboratories, large
sets of real data are available, containing sufficient
amounts of genetic profiles from individual horses
belonging to different breeds. Interestingly, horse
ancestry testing could be based upon comparing
the DNA genotype of a horse to a reference data
set of various horse breeds, and thus there appears
another viable perspective for machine learning,
which allows the algorithm to be trained on big
data. In this context, it is also important to stress
the fact that innovated computational tools will
potentially lead to establishing a novel web server
to allow the identification of horse breeds. Such
means and instruments based on DNA profile will
then enable breeders to verify not only an animal’s
but also a breed’s identity.
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