Czech Journal of Animal Science, 64, 2019 (10): 405—410 Original Paper

https://doi.org/10.17221/148/2019-CJAS

Impact of reference population size and marker density
on accuracy of population imputation

ANITA KRANJCEVICOVA'?* Eva KASNA®, MICHAELA BRZAKOVA', JOSEF PRIBYL?,

LuBoS VOSTRY!

!Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources,
Czech University of Life Sciences Prague, Prague, Czech Republic

’Department of Genetics and Breeding of Farm Animals, Institute of Animal Science,
Prague-Uhrinéves, Czech Republic

*Corresponding author: kranjcevicova@af.czu.cz

Citation: Kranjcevicova A., Brzakova M., Kasnd E., Pribyl J., Vostry L. (2019): Impact of reference population and marker
density on accuracy of population imputation. Czech J. Anim. Sci., 64, 405—410.

Abstract: The effect of the reference population size and the number of missing single nucleotide polymorphisms
(SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was
applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders
Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 Bead-
Chip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second
containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for
a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and
95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by
two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since
animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy
was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced
by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the
large number of missing SNPs.
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The genomic selection, where genomic breeding
values are calculated by means of single nucleotide
polymorphisms (SNPs), is used in dairy cattle in
many countries (Hayes et al. 2009). The interest in
this technology was induced by the availability of
commercial high density SNP chips, by increased
genetic gain compared to conventional animal
performance testing due to a reduction in the
generation interval, and by a higher accuracy of
the selection of breeding animals at a younger age

(Schaeffer 2006). There is a desire to produce lower
density chips to reduce testing costs and use this
method more effectively. The imputation of SNP
markers from lower density chips to higher density
chips is one of the key strategies (Zhang and Druet
2010). Several programs have been developed for
SNP imputation. These are mainly techniques
based on pedigree, segregation of alleles, linkage
disequilibrium, population information, and their
mutual combinations. The most commonly used

Supported by the Ministry of Agriculture of the Czech Republic (Projects No. QK1810253 and No. MZeRO0718) and
by the Czech University of Life Sciences Prague (Project No. SV19-07-21360).

405


https://www.agriculturejournals.cz/web/cjas/

Original Paper

Czech Journal of Animal Science, 64, 2019 (10): 405410

programs from this category are Alphalmpute (Hickey
etal. 2011), Beagle (Browning et al. 2018), Findhap
(VanRaden et al. 2015) and PedImpute (Nicolazzi et
al. 2013). Imputation is a key strategy for obtaining
information on animal genotypes at a lower cost
(Whalen et al. 2018). Sometimes, no strong relation-
ship between individuals is assumed, and therefore
imputation without pedigree information is needed.
In this case, population imputation should be used
and this option is offered by the FImpute software
(Sargolzaei et al. 2014). The population imputation
assumes that the individuals are not related and
close relationships between individuals are used
indirectly. It captures similarities between the in-
dividuals using long shared haplotypes (Browning
and Browning 2011). Closer relatives usually share
longer haplotypes, while more distant relatives share
shorter haplotypes. The imputation accuracy is in-
fluenced by several factors, such as the number and
composition of individuals in the reference group,
effective population size, and differences between
reference and imputed genotype densities (Sargolzaei
etal. 2014). On the contrary, the Beagle software is
based on a haplotype-cluster model that groups lo-
cally possible haplotypes into clusters and offers the
addition of atypical genotypes, haplotype phasing,
and multiallelic manipulation markers (Browning
etal. 2011). It is a very precise but computationally
demanding method (Sargolzaei et al. 2014).

MATERIAL AND METHODS

Data used for the purpose of this study were ob-
tained from the Holstein Cattle Breeders Association
of the Czech Republic. The Czech Holstein population
was created by grading-up the local Black-Pied popu-
lation and part of the Czech Fleckvieh population
with imported Holstein sires and by a later import of
purebred heifers in the 1990s. The present population
is open with the import of bulls from abroad. A total of
1000 genotyped animals were used in this study. The
population consisted of 51% males and 49% females
born between 1993 and 2015. The Czech Republic
was a country of origin of all females. The bulls came
from 13 countries. Most of them (33%) came from
the international exchange with Switzerland, 25%
were from the Czech Republic, 14% from the Neth-
erlands. Illumina BovineSNP50 v.2 BeadChip is the
most widely used in our database, and we consider
it as a reference chip in data imputation for the es-
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timation of genomic breeding values. The database
was used to create two datasets. In both cases only
autosomes were considered. Dataset A included the
original genotypes containing 52 826 SNPs. In this
case, the genotypes also contained missing data. In
dataset B, the missing data were discarded and the
total number of 37 688 SNPs was used. Both data-
sets have been modified to be used in the FImpute
software. FImpute software was chosen for simple
input data editing and very fast calculation. Al-
leles were recorded with 0 for genotype AA, 1 for
genotype AB, 2 for genotype BB and 5 for missing
genotype. For imputation, the default parameter file
for population imputation was used (Sargolzaei et
al. 2014). Because we did not have the same animals
genotyped on panels with different densities, we
simulated less dense panels by deleting a part of
the SNPs. To test the accuracy of population im-
putation we set two main parameters, namely the
size of the reference population and the number of
deleted markers. The size of the reference popula-
tion was determined as a percentage of genotyped
animals, where a segment of the SNPs was not
deleted. Animals were randomly selected for the
reference population at levels 10, 25, 50 and 75%
(100 to 750 animals). For animals that were not a
part of the reference population 15, 30, 55, 70 and
95% of SNPs were randomly deleted. Thus, 20 test
files for each dataset were created. Each file with
different levels of reference population and deleted
markers was subsequently imputed by FImpute
software (Sargolzaei et al. 2014) This method of
modifying data to determine imputation accuracy
is called genotype masking (Gurgul et al. 2014). Ac-
curacy was determined as the correlation between
the original SNP value before deletion and its value
after imputation (Hickey et al. 2011; Carvalheiro
et al. 2014). Since the selection of individuals for
the reference population and the selection of SNPs
that were deleted were random, the entire process,
including data imputation, was repeated 100 times.
A total of 2000 imputations were made for each
dataset. The resulting accuracy was calculated as
the average of accuracies for all repetitions.
n  Cov(SNPgp, SNP,))

i=1
OsNPgp X OSNP
Average accuracy = ED Al
n
where:
n = number of repetitions

SNP,, = SNP code before deleting
SNP,, = SNP code after imputation
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For further assessment of accuracy, the percent-
age of correctly imputed genotypes (PERC) was
determined. It was determined as a percentage of
the match between the original and the imputed
genotype (Carvalheiro et al. 2014; Gurgul et al.
2014). Both parameters were calculated only for
imputed SNPs that were masked before imputation.

RESULTS AND DISCUSSION

Imputation accuracy. The resulting average
population imputation accuracy depending on the
size of the reference population and the density of
deleted markers is shown in Table 1. The specific
number of deleted markers for datasets A and B
is presented in Table 2. We can observe that the
expected imputation accuracy values depend on
the dataset composition. Higher accuracy ranging
from 0.79 to 0.99 was achieved in dataset B, which
contained only complete information without
missing values. The average accuracy in dataset A,
which contained basically missing values in the
genotype, was slightly lower but still high in the
range from 0.78 to 0.96. In our study, the accura-
cies had similar values like the calculated ones
in the form of correlation between the original
and imputed SNPs, which is consistent with the
study of Carvalheiro et al. (2014). Taking into
account the reference population size, it can be
seen that the imputation accuracy on average in-
creases with the size of the reference population,
which is compatible with the results of the study
published by VanRaden et al. (2011). The lowest
imputation accuracy was found in the 10% refer-
ence population - it ranged from 0.78 to 0.96 in
dataset A and from 0.79 to 0.99 in dataset B. Dif-
ferences were dependent especially on the number

Table 2. Number of single nucleotide polymorphisms
(SNPs) to be imputed in datasets A and B

SNPs (%) Dataset A (n =52 826) Dataset B (# =37 688)

15 7 924 5653
30 15 848 11 306
55 29 054 20728
70 36 978 26 382
95 50185 35 804

of deleted SNPs. The results are consistent with
an assumption that increasing amounts of deleted
SNPs result in a decrease of average imputation
accuracy. This fact was observed across all sizes
of the reference population in both datasets. The
highest average accuracy was achieved in the refer-
ence population with 75% of genotyped animals.
It ranged from 0.93 to 0.96 in dataset A and from
0.95 to 0.99 in dataset B. With the 25% and 50%
reference population size a similar imputation
accuracy was obtained. For dataset A, it ranged
from 0.83 to 0.96 for 25% reference population
and from 0.86 to 0.97 for 50% reference popula-
tion. For dataset B, it ranged from 0.84 to 0.99
for 25% reference population and from 0.90 to
0.99 for 50% reference population. An interesting
situation was observed in cases with a low level
of missing SNPs, where the differences between
the reference populations were not so perceptible.
Therefore, it can be assumed that in the case of
a small number of missing genotypes, the size of
the reference population is not so important. On
the other hand, the results of the study show that,
despite the large number of missing genotypes like
in the case with 95% of missing genotypes, relatively
high imputation accuracy values were achieved in
the range of 0.78-0.79 even in the smallest refer-
ence population containing only 100 animals. By

Table 1. Average accuracy of population imputation for datasets A’ and B2

Deleted Size of reference population

markers 100 animals (10%) 250 animals (25%) 500 animals (50%) 750 animals (75%)
(%) A B A B A B A B
15 0.9624 0.9945 0.9646 0.9971 0.9658 0.9986 0.9663 0.9994
30 0.9575 0.9884 0.9619 0.9937 0.9645 0.9967 0.9659 0.9986
55 0.9456 0.9739 0.9546 0.9846 0.9604 0.9914 0.9639 0.9961
70 0.9323 0.9565 0.9462 0.9733 0.9555 0.9848 0.9618 0.9929
95 0.7812 0.7929 0.8329 0.8440 0.8852 0.9034 0.9282 0.9537

dataset A includes original genotypes, dataset B includes a modified file with genotypes
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comparison, Carvalheiro et al. (2014) reported
an accuracy of imputation 0.97 from 50K chip to
HD chip. This corresponds approximately to 95% of
missing SNPs. In this case, the reference population
contained 79% of the genotyped animals (Carvalheiro
et al. 2014). In another study on the effect of the
reference population size on imputation accuracy by
Ventura et al. (2014), comparable results were also
reported. There was an imputation from 6K chip to
50K chip and the missing SNPs accounted for about
65%. A total of 2300 genotyped animals were used
and three reference populations were tested with 11,
33 and 65% of the animals in reference populations.
The resulting imputation accuracy using Fimpute
was 0.87 for the first population, 0.93 for the second
population, and 0.94 for the largest reference popula-
tion. A similar imputation scenario from 6K to 50K
was also used by Wang et al. (2016). In this case the
reference population consisted of about 80% of the
total number of animals. The resulting population
imputation accuracy with Fimpute was 0.92. Ventura
etal. (2014) argued that if the reference population
was too small, the inclusion of relatives should be a
priority to improve imputation accuracy. Adding key
close relatives to the reference population increases
the imputation accuracy up to 3%. The effect of the
reference population size on imputation accuracy
was also studied by Ghoreishifar et al. (2018) in water
buffaloes. FImpute was used for imputation again,
but this time with the difference that the pedigree
information was included. The 10K chip was imputed
to the 90K chip, the number of missing SNPs was
73%. Several reference population sizes were tested.
In comparison with our study, sizes of 30, 52 and
80% were mentioned. The resulting imputation ac-
curacy was 0.88 for 30% reference population, 0.93
for 52% reference population, and 0.97 for 80% ref-
erence population. We obtained higher accuracies

https://doi.org/10.17221/148/2019-CJAS

for datasets A and B in our study: for populations
of 25% (0.94; 0.97), 50% (0.95; 0.98) and 75% (0.96;
0.99). Higher values of imputation accuracy can be
observed despite the absence of pedigree informa-
tion. This may be due to the high genetic similarity
of the test individuals in our population and the
capture of a greater number of shared haplotypes.

Percentage of correctly imputed SNPs. When we
look at the percentage of correctly imputed SNPs
in Table 3, we can observe the same trend as for
imputation accuracy. In general, higher values are
observed for dataset B again, where the reference
population consists of animals without missing SNPs.
PERC values, depending on the size of the reference
population, ranged from 0.78 to 0.99 for dataset A
and from 0.77 to 0.99 for dataset B. Higher values
were reached with larger reference population size
and lower number of missing SNPs. Carvalheiro et
al. (2014) imputed the 50K chip to the HD chip (cor-
responding to 95% of missing SNPs and 79% of the
reference population size), with the PERC value of
0.97. In our study, the final percentage for the 75%
reference population size and 95% of missing mark-
ers was slightly lower than 0.94. The low value may
be due to a lower number of SNPs in the reference
genotypes and a slightly smaller reference popula-
tion. PERC values may also be affected by incorrect
imputation of one or both alleles.

Selection of reference chip. The selection of Illu-
mina BovineSNP50 v.2 BeadChip was intentional.
Animals genotyped on this chip represent about 75%
of all animals in the whole database that was used
in our study. Thus, if we focus on the 75% reference
population, the average imputation accuracy de-
pending on the number of deleted SNPs shows the
expected trend, which is presented in Figure 1. A
very small increase in dataset B is observed, due to
the absence of missing reference genotypes. But on

Table 3. Average percentage of correctly imputed SNPs for datasets A! and B?

Size of reference population

Deleted

markers 100 animals (10%) 250 animals (25%) 500 animals (50%) 750 animals (75%)
(%) A B A B A B A B
15 0.9914 0.9929 0.9939 0.9963 0.9956 0.9982 0.9965 0.9993
30 0.9843 0.9846 0.9900 0.9919 0.9933 0.9956 0.9956 0.9981
55 0.9683 0.9661 0.9800 0.9798 0.9876 0.9888 0.9931 0.9949
70 0.9509 0.9447 0.9688 0.9656 0.9808 0.9806 0.9898 0.9899
95 0.7789 0.7672 0.8388 0.8212 0.9000 0.8894 0.9440 0.9440

!dataset A includes original genotypes, *dataset B includes a modified file with genotypes
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Figure 1. Average accuracy for reference population 75%
depending on the proportion of deleted single nucleotide
polymorphisms (SNPs)

average, imputation accuracies in datasets A and B
are not very much different. An even less different
course can be seen in PERC in Figure 2. However, if
we look at the course of accuracy estimation over all
the repetitions shown in Figure 3A (dataset A) and
3B (dataset B), some differences can be observed. In
Figure 3A for dataset A, the curves for the number
of deleted SNPs (15, 30, 55 and 70%) overlap sig-
nificantly and their course is difficult to recognize.
On the other hand, in Figure 3B for dataset B, the
individual curves for the number of deleted SNPs can
be easily recognized. Their distribution is consistent
with an assumption that the imputation accuracy
decreases as the number of deleted SNPs increases.
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Figure 2. Average percentage of correctly imputed single
nucleotide polymorphisms (SNPs) for reference popula-
tion 75% depending on the number of SNPs

Overlapping wave-formed curves in dataset A may be
affected by the occurrence of missing SNPs in animal
genomes in the reference population. However, the
imputation accuracy of the 75% reference population
can be evaluated as high, regardless of the number
of deleted SNPs. Imputation can play a major role
in predicting genomic breeding values (GEBV). It
enables to include a higher number of genotyped
animals in the estimation of GEBV and thereby
increase the accuracy of the estimation (VanRaden
et al. 2011). Mulder et al. (2012) found that GEBV
accuracy increases linearly with increasing imputa-
tion accuracy. This means that only SNPs with high
imputation accuracy have a positive effect on GEBV
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reliability. Obviously, if animal genotypes are not
perfectly imputed, there is a very small reduction
in GEBV accuracy (Daetwyler et al. 2011).

CONCLUSION

The results of our study showed that the size of
the reference population and the number of deleted
SNPs affect the population imputation accuracy. If
a sufficient reference population size is selected,
the imputation accuracy is high despite the larger
percentage of missing SNPs. However, the small
size of the reference population could reduce the
imputation accuracy of rare variants that were not
paid attention in this article. In this case, individu-
als with rare variants should be included in the
reference population. In conclusion, population
imputation is a suitable method for populations
that are not closely related.
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