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Abstract: The effect of the reference population size and the number of missing single nucleotide polymorphisms 
(SNPs) on imputation accuracy was determined. The population imputation method using the FImpute software was 
applied. The dataset used for the purpose of this study was taken from the database of the Holstein Cattle Breeders 
Association of the Czech Republic. It contains 1000 animals genotyped with the Illumina BovineSNP50 v.2 Bead-
Chip. Two datasets were created, the first containing the original genotypes, including the missing SNPs, the second 
containing the same genotypes modified to avoid missing data. In these datasets, animals were randomly selected for 
a reference population (10, 25, 50 and 75%) and there were randomly selected SNPs for deletion (15, 30, 55, 70, and 
95%) in animals that were not used as the reference population. Subsequently, the data accuracy was determined by 
two parameters: correlation between original and imputed SNPs and percentage of correctly imputed SNPs. Since 
animals and SNPs were randomly selected, the process including data imputation was repeated 100 times. Accuracy 
was determined as the average accuracy over all repetitions. It was found that the imputation accuracy is influenced 
by both parameters. If the size of the reference population is sufficient, the imputation accuracy is higher despite the 
large number of missing SNPs.

Keywords: cattle; genomics; marker density; missing SNPs; simulation

The genomic selection, where genomic breeding 
values are calculated by means of single nucleotide 
polymorphisms (SNPs), is used in dairy cattle in 
many countries (Hayes et al. 2009). The interest in 
this technology was induced by the availability of 
commercial high density SNP chips, by increased 
genetic gain compared to conventional animal 
performance testing due to a reduction in the 
generation interval, and by a higher accuracy of 
the selection of breeding animals at a younger age 

(Schaeffer 2006). There is a desire to produce lower 
density chips to reduce testing costs and use this 
method more effectively. The imputation of SNP 
markers from lower density chips to higher density 
chips is one of the key strategies (Zhang and Druet 
2010). Several programs have been developed for 
SNP imputation. These are mainly techniques 
based on pedigree, segregation of alleles, linkage 
disequilibrium, population information, and their 
mutual combinations. The most commonly used 
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programs from this category are AlphaImpute (Hickey 
et al. 2011), Beagle (Browning et al. 2018), Findhap 
(VanRaden et al. 2015) and PedImpute (Nicolazzi et 
al. 2013). Imputation is a key strategy for obtaining 
information on animal genotypes at a lower cost 
(Whalen et al. 2018). Sometimes, no strong relation-
ship between individuals is assumed, and therefore 
imputation without pedigree information is needed. 
In this case, population imputation should be used 
and this option is offered by the FImpute software 
(Sargolzaei et al. 2014). The population imputation 
assumes that the individuals are not related and 
close relationships between individuals are used 
indirectly. It captures similarities between the in-
dividuals using long shared haplotypes (Browning 
and Browning 2011). Closer relatives usually share 
longer haplotypes, while more distant relatives share 
shorter haplotypes. The imputation accuracy is in-
fluenced by several factors, such as the number and 
composition of individuals in the reference group, 
effective population size, and differences between 
reference and imputed genotype densities (Sargolzaei 
et al. 2014). On the contrary, the Beagle software is 
based on a haplotype-cluster model that groups lo-
cally possible haplotypes into clusters and offers the 
addition of atypical genotypes, haplotype phasing, 
and multiallelic manipulation markers (Browning 
et al. 2011). It is a very precise but computationally 
demanding method (Sargolzaei et al. 2014). 

MATERIAL AND METHODS

Data used for the purpose of this study were ob-
tained from the Holstein Cattle Breeders Association 
of the Czech Republic. The Czech Holstein population 
was created by grading-up the local Black-Pied popu-
lation and part of the Czech Fleckvieh population 
with imported Holstein sires and by a later import of 
purebred heifers in the 1990s. The present population 
is open with the import of bulls from abroad. A total of 
1000 genotyped animals were used in this study. The 
population consisted of 51% males and 49% females 
born between 1993 and 2015. The Czech Republic 
was a country of origin of all females. The bulls came 
from 13 countries. Most of them (33%) came from 
the international exchange with Switzerland, 25% 
were from the Czech Republic, 14% from the Neth-
erlands. Illumina BovineSNP50 v.2 BeadChip is the 
most widely used in our database, and we consider 
it as a reference chip in data imputation for the es-

timation of genomic breeding values. The database 
was used to create two datasets. In both cases only 
autosomes were considered. Dataset A included the 
original genotypes containing 52 826 SNPs. In this 
case, the genotypes also contained missing data. In 
dataset B, the missing data were discarded and the 
total number of 37 688 SNPs was used. Both data-
sets have been modified to be used in the FImpute 
software. FImpute software was chosen for simple 
input data editing and very fast calculation. Al-
leles were recorded with 0 for genotype AA, 1 for 
genotype AB, 2 for genotype BB and 5 for missing 
genotype. For imputation, the default parameter file 
for population imputation was used (Sargolzaei et 
al. 2014). Because we did not have the same animals 
genotyped on panels with different densities, we 
simulated less dense panels by deleting a part of 
the SNPs. To test the accuracy of population im-
putation we set two main parameters, namely the 
size of the reference population and the number of 
deleted markers. The size of the reference popula-
tion was determined as a percentage of genotyped 
animals, where a segment of the SNPs was not 
deleted. Animals were randomly selected for the 
reference population at levels 10, 25, 50 and 75% 
(100 to 750 animals). For animals that were not a 
part of the reference population 15, 30, 55, 70 and 
95% of SNPs were randomly deleted. Thus, 20 test 
files for each dataset were created. Each file with 
different levels of reference population and deleted 
markers was subsequently imputed by FImpute 
software (Sargolzaei et al. 2014) This method of 
modifying data to determine imputation accuracy 
is called genotype masking (Gurgul et al. 2014). Ac-
curacy was determined as the correlation between 
the original SNP value before deletion and its value 
after imputation (Hickey et al. 2011; Carvalheiro 
et al. 2014). Since the selection of individuals for 
the reference population and the selection of SNPs 
that were deleted were random, the entire process, 
including data imputation, was repeated 100 times. 
A total of 2000 imputations were made for each 
dataset. The resulting accuracy was calculated as 
the average of accuracies for all repetitions. 

where:
n 		 = number of repetitions
SNPBD		= SNP code before deleting
SNPAI		= SNP code after imputation 
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For further assessment of accuracy, the percent-
age of correctly imputed genotypes (PERC) was 
determined. It was determined as a percentage of 
the match between the original and the imputed 
genotype (Carvalheiro et al. 2014; Gurgul et al. 
2014). Both parameters were calculated only for 
imputed SNPs that were masked before imputation.

RESULTS AND DISCUSSION

Imputation accuracy. The resulting average 
population imputation accuracy depending on the 
size of the reference population and the density of 
deleted markers is shown in Table 1. The specific 
number of deleted markers for datasets A and B 
is presented in Table 2. We can observe that the 
expected imputation accuracy values depend on 
the dataset composition. Higher accuracy ranging 
from 0.79 to 0.99 was achieved in dataset B, which 
contained only complete information without 
missing values. The average accuracy in dataset A, 
which contained basically missing values in the 
genotype, was slightly lower but still high in the 
range from 0.78 to 0.96. In our study, the accura-
cies had similar values like the calculated ones 
in the form of correlation between the original 
and imputed SNPs, which is consistent with the 
study of Carvalheiro et al. (2014). Taking into 
account the reference population size, it can be 
seen that the imputation accuracy on average in-
creases with the size of the reference population, 
which is compatible with the results of the study 
published by VanRaden et al. (2011). The lowest 
imputation accuracy was found in the 10% refer-
ence population ‒ it ranged from 0.78 to 0.96 in 
dataset A and from 0.79 to 0.99 in dataset B. Dif-
ferences were dependent especially on the number 

of deleted SNPs. The results are consistent with 
an assumption that increasing amounts of deleted 
SNPs result in a decrease of average imputation 
accuracy. This fact was observed across all sizes 
of the reference population in both datasets. The 
highest average accuracy was achieved in the refer-
ence population with 75% of genotyped animals. 
It ranged from 0.93 to 0.96 in dataset A and from 
0.95 to 0.99 in dataset B. With the 25% and 50% 
reference population size a similar imputation 
accuracy was obtained. For dataset A, it ranged 
from 0.83 to 0.96 for 25% reference population 
and from 0.86 to 0.97 for 50% reference popula-
tion. For dataset B, it ranged from 0.84 to 0.99 
for 25% reference population and from 0.90 to 
0.99 for 50% reference population. An interesting 
situation was observed in cases with a low level 
of missing SNPs, where the differences between 
the reference populations were not so perceptible. 
Therefore, it can be assumed that in the case of 
a small number of missing genotypes, the size of 
the reference population is not so important. On 
the other hand, the results of the study show that, 
despite the large number of missing genotypes like 
in the case with 95% of missing genotypes, relatively 
high imputation accuracy values were achieved in 
the range of 0.78‒0.79 even in the smallest refer-
ence population containing only 100 animals. By 

Table 1. Average accuracy of population imputation for datasets A1 and B2

Deleted 
markers 
(%)

Size of reference population
100 animals (10%) 250 animals (25%)   500 animals (50%)   750 animals (75%)

A B A B A B A B
15 0.9624 0.9945 0.9646 0.9971 0.9658 0.9986 0.9663 0.9994
30 0.9575 0.9884 0.9619 0.9937 0.9645 0.9967 0.9659 0.9986
55 0.9456 0.9739 0.9546 0.9846 0.9604 0.9914 0.9639 0.9961
70 0.9323 0.9565 0.9462 0.9733 0.9555 0.9848 0.9618 0.9929
95 0.7812 0.7929 0.8329 0.8440 0.8852 0.9034 0.9282 0.9537

1dataset A includes original genotypes, 2dataset B includes a modified file with genotypes

Table 2. Number of single nucleotide polymorphisms 
(SNPs) to be imputed in datasets A and B

SNPs (%) Dataset A (n = 52 826) Dataset B (n =37 688)
15   7 924   5 653
30 15 848 11 306
55 29 054 20 728
70 36 978 26 382
95 50 185 35 804
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comparison, Carvalheiro et al. (2014) reported 
an accuracy of imputation 0.97 from 50K chip to 
HD chip. This corresponds approximately to 95% of 
missing SNPs. In this case, the reference population 
contained 79% of the genotyped animals (Carvalheiro 
et al. 2014). In another study on the effect of the 
reference population size on imputation accuracy by 
Ventura et al. (2014), comparable results were also 
reported. There was an imputation from 6K chip to 
50K chip and the missing SNPs accounted for about 
65%. A total of 2300 genotyped animals were used 
and three reference populations were tested with 11, 
33 and 65% of the animals in reference populations. 
The resulting imputation accuracy using FImpute 
was 0.87 for the first population, 0.93 for the second 
population, and 0.94 for the largest reference popula-
tion. A similar imputation scenario from 6K to 50K 
was also used by Wang et al. (2016). In this case the 
reference population consisted of about 80% of the 
total number of animals. The resulting population 
imputation accuracy with FImpute was 0.92. Ventura 
et al. (2014) argued that if the reference population 
was too small, the inclusion of relatives should be a 
priority to improve imputation accuracy. Adding key 
close relatives to the reference population increases 
the imputation accuracy up to 3%. The effect of the 
reference population size on imputation accuracy 
was also studied by Ghoreishifar et al. (2018) in water 
buffaloes. FImpute was used for imputation again, 
but this time with the difference that the pedigree 
information was included. The 10K chip was imputed 
to the 90K chip, the number of missing SNPs was 
73%. Several reference population sizes were tested. 
In comparison with our study, sizes of 30, 52 and 
80% were mentioned. The resulting imputation ac-
curacy was 0.88 for 30% reference population, 0.93 
for 52% reference population, and 0.97 for 80% ref-
erence population. We obtained higher accuracies 

for datasets A and B in our study: for populations 
of 25% (0.94; 0.97), 50% (0.95; 0.98) and 75% (0.96; 
0.99). Higher values of imputation accuracy can be 
observed despite the absence of pedigree informa-
tion. This may be due to the high genetic similarity 
of the test individuals in our population and the 
capture of a greater number of shared haplotypes.

Percentage of correctly imputed SNPs. When we 
look at the percentage of correctly imputed SNPs 
in Table 3, we can observe the same trend as for 
imputation accuracy. In general, higher values are 
observed for dataset B again, where the reference 
population consists of animals without missing SNPs. 
PERC values, depending on the size of the reference 
population, ranged from 0.78 to 0.99 for dataset A 
and from 0.77 to 0.99 for dataset B. Higher values 
were reached with larger reference population size 
and lower number of missing SNPs. Carvalheiro et 
al. (2014) imputed the 50K chip to the HD chip (cor-
responding to 95% of missing SNPs and 79% of the 
reference population size), with the PERC value of 
0.97. In our study, the final percentage for the 75% 
reference population size and 95% of missing mark-
ers was slightly lower than 0.94. The low value may 
be due to a lower number of SNPs in the reference 
genotypes and a slightly smaller reference popula-
tion. PERC values may also be affected by incorrect 
imputation of one or both alleles.

Selection of reference chip. The selection of Illu-
mina BovineSNP50 v.2  BeadChip was intentional. 
Animals genotyped on this chip represent about 75% 
of all animals in the whole database that was used 
in our study. Thus, if we focus on the 75% reference 
population, the average imputation accuracy de-
pending on the number of deleted SNPs shows the 
expected trend, which is presented in Figure 1. A 
very small increase in dataset B is observed, due to 
the absence of missing reference genotypes. But on 

Table 3. Average percentage of correctly imputed SNPs for datasets A1 and B2

Deleted 
markers
(%)

Size of reference population
100 animals (10%) 250 animals (25%)   500 animals (50%)   750 animals (75%)

A B A B A B A B
15 0.9914 0.9929 0.9939 0.9963 0.9956 0.9982 0.9965 0.9993
30 0.9843 0.9846 0.9900 0.9919 0.9933 0.9956 0.9956 0.9981
55 0.9683 0.9661 0.9800 0.9798 0.9876 0.9888 0.9931 0.9949
70 0.9509 0.9447 0.9688 0.9656 0.9808 0.9806 0.9898 0.9899
95 0.7789 0.7672 0.8388 0.8212 0.9000 0.8894 0.9440 0.9440

1dataset A includes original genotypes, 2dataset B includes a modified file with genotypes
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average, imputation accuracies in datasets A and B 
are not very much different. An even less different 
course can be seen in PERC in Figure 2. However, if 
we look at the course of accuracy estimation over all 
the repetitions shown in Figure 3A (dataset A) and 
3B (dataset B), some differences can be observed. In 
Figure 3A for dataset A, the curves for the number 
of deleted SNPs (15, 30, 55 and 70%) overlap sig-
nificantly and their course is difficult to recognize. 
On the other hand, in Figure 3B for dataset B, the 
individual curves for the number of deleted SNPs can 
be easily recognized. Their distribution is consistent 
with an assumption that the imputation accuracy 
decreases as the number of deleted SNPs increases. 

Overlapping wave-formed curves in dataset A may be 
affected by the occurrence of missing SNPs in animal 
genomes in the reference population. However, the 
imputation accuracy of the 75% reference population 
can be evaluated as high, regardless of the number 
of deleted SNPs. Imputation can play a major role 
in predicting genomic breeding values (GEBV). It 
enables to include a higher number of genotyped 
animals in the estimation of GEBV and thereby 
increase the accuracy of the estimation (VanRaden 
et al. 2011). Mulder et al. (2012) found that GEBV 
accuracy increases linearly with increasing imputa-
tion accuracy. This means that only SNPs with high 
imputation accuracy have a positive effect on GEBV 
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reliability. Obviously, if animal genotypes are not 
perfectly imputed, there is a very small reduction 
in GEBV accuracy (Daetwyler et al. 2011).

CONCLUSION

The results of our study showed that the size of 
the reference population and the number of deleted 
SNPs affect the population imputation accuracy. If 
a sufficient reference population size is selected, 
the imputation accuracy is high despite the larger 
percentage of missing SNPs. However, the small 
size of the reference population could reduce the 
imputation accuracy of rare variants that were not 
paid attention in this article. In this case, individu-
als with rare variants should be included in the 
reference population. In conclusion, population 
imputation is a suitable method for populations 
that are not closely related. 
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