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ABSTRACT

Mahdavi M., Dashab G.R., Vafaye Valleh M., Rokouei M., Sargolzaei M.: (2018): Genomic evaluation and 
variance component estimation of additive and dominance effects using single nucleotide polymorphism 
markers in heterogeneous stock mice. Czech J. Anim. Sci., 63, 492–506.

Exploration of genetic variance has mostly been limited to additive effects estimated using pedigree data and 
non-additive effects have been ignored. This study aimed to evaluate the performance of single nucleotide poly-
morphisms (SNPs) marker models in the mixed and orthogonal framework including both additive and non-
additive effects for estimating variances and genomic prediction in four diabetes-related traits in heterogeneous 
stock mice. Models have performed differently in detecting SNPs affecting traits. Dominance variances explained 
over 14.7 and 3.8% of genetic and phenotype variance in a Genomic prediction and variance component estima-
tion method (GVCBLUP) framework. Reliabilities of additive Genomic best linear unbiased prediction model 
(GBLUP) in different traits ranged from 44.8 to 66.6%, for GVCBLUPs framework including both additive and 
dominance effects (MAD), and 46.1 to 69% for the model including additive effect (MA). Dominance GBLUP reli-
abilities ranged from 6 to 26.4% for MAD and from 22.5 to 50.5% in the model including dominance (MD). MA 
and MD had higher reliability for additive and dominance GBLUPs compared to MAD. Reliabilities of GBLUPs 
in MAD and MA for all traits were not significant except for growth slope (P < 0.01). In orthogonal framework 
models, epistasis variances accounted for a greater proportion (87.3, 89.1, 95.5, and 77.2%) of genetic variation 
for end weight, growth slope, body mass index, and body length, respectively. Heritability in a broad sense was 
estimated at 1.12, 1.67, 3.64, and 2.0%, in which non-additive heritability had a significant contribution. Genetic 
variances explained by dominance using GVCBLUPs were 16.8, 29.4, 14.6, and 14.9% for the traits. Generally, the 
non-additive models had a lower value of deviance information criterion (DIC) and performed better in estimat-
ing the variance component. Comparing the estimated variance by orthogonal framework models confirmed 
the results previously estimated by GVCBLUPs, with the difference that the estimates were shrinking. Following 
significant SNPs affecting diabetes-related traits by post-genome-wide studies could reveal unknown aspects and 
contribute to genetic control of the disease.
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Traditionally, the exploration of genetic vari-
ance in humans, plants, and livestock species has 
mostly been limited to the use of additive effects 
estimated using pedigree data. In this context, 
the impact of genetics in complex traits has been 
quantified as heritability, e.g., the proportion of 
the total phenotypic variance explained by addi-
tive genetic variance. However, the estimation of 
heritability via the use of additive models does 
not only capture additive gene action but can 
potentially also capture part of the dominance 
effects and epistasis interactions (Hill et al. 2008). 
Therefore, the proportion of phenotypic variation 
that is explained by all genetic effects, and how 
much of the total genetic variation is actually due 
to additive effects, has still been unclear in modern 
genetics (Vinkhuyzen et al. 2013).

Until recently, due to the lack of genomic data, 
estimation of dominance deviations using pheno-
typic and pedigree data has been subjected to some 
limitation such as high computational demand and 
unavailability of large data with sufficient propor-
tion of informative individuals (full-sibs) in data 
set. Several studies have estimated non-additive 
variances in livestock using traditional pedigree in-
formation (Palucci et al. 2007) and reported a small 
but significant non-additive variance. However, it is 
difficult to estimate non-additive variance because 
firstly it is often, at least partially, confounded 
with other effects such as common environment 
or maternal effects. Consequently, estimates of 
non-additive variance may be biased upwards. 
Secondly, there is a lack of informative pedigrees, 
typically with large full-sib families, which are 
needed for accurate estimates of dominance effects. 
Thirdly, at the individual animal level, dominance 
is hardly used in animal breeding, although it 
contains a relevant part of genetic variation. The 
reasons are the heavy computational demand of 
large-scale genetic evaluations for dominance, the 
relatively low accuracy of resulting estimates of 
dominance effects, and the complexity of planning 
and computing the outcome of planned mating. 
Some estimations of dominance variance in dairy 
cattle that are based on pedigree data range from 
7.3 to 49.8% of the total genetic variance for con-
formation traits (Tempelman and Burnside 1990) 
and from 3.4 to 42.9% for milk production traits 
(Van Tassell et al. 2000).

In view of this, it is not surprising that most 
genetic evaluation systems use an additive model 

and ignore non-additive effects, especially consid-
ering that their aim is to estimate breeding values 
or additive genetic values. In addition, Hill (2008) 
argued that even if gene effects are non-additive, 
most of the genetic variance is still expected to 
be additive variance. Despite this, dominance has 
still been of theoretical and practical interest, 
because it is heavily used in crosses of animal 
breeds and plant lines (e.g., in pigs, poultry, or 
corn). In principle, assortative mating or mate 
allocation can promote the field performances of 
livestock and crops.

In livestock populations, one of the main reasons 
why dominance or higher order interaction terms 
have not been considered in genetic evaluations 
is the lack of pedigree or that the pedigree rela-
tionships are not informative enough. The recent 
advent of dense single nucleotide polymorphism 
(SNP) panels and genomic selection methods has 
lightened interest in the prediction of non-additive 
genetic effects. Most epistatic models only focus 
on additive-by-additive epistatic interactions (Jiang 
and Reif 2015) while dominance-by-dominance 
and dominance-by-additive interactions may play 
a major role in heterosis. A non-orthogonal parti-
tion of variance component may be suggested a 
large confounding between the estimated additive 
and non-additive variance and a wrong conclu-
sion, especially in crossbreeding systems. This is 
probably because their additive and dominance 
covariates are highly correlated. In fact, the avail-
ability of SNP genotypes especially in the absence 
of reliable pedigree data e.g. in sheep and salmon 
and distinctive method and model represent a 
new opportunity to estimate non-additive effects 
at individual loci and to estimate non-additive 
variances.

Large-scale genome-wide association studies 
(GWAS) have identified thousands of SNPs as-
sociated with hundreds of traits and diseases. 
However, only a fraction of the trait variance can 
be explained by the SNPs reported by GWAS. The 
proportion of the total additive genetic variance 
explained by the quantitative trait loci (QTL) de-
tected in the GWAS was always between 10 and 
40% and even lower if expressed as a fraction of 
the phenotypic variance (Armando et al. 2015). 
This is in broad agreement with the percentages of 
variation explained by significant SNPs in a range 
of studies (Wood et al. 2014) with very large sam-
ple sizes. With the availability of SNP genotypes, 
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non-additive effects at a marker locus or between 
loci can be readily determined, dominance effects 
of markers can be estimated (Wellmann and Ben-
newitz 2012) and computing the expected outcome 
of planned mating based on SNP genotypes is 
straightforward. Furthermore, covariance matrices 
of genomic non-additive effects among individuals 
can be calculated, similar to matrices of genomic 
additive relationships, which are widely used in 
genomic selection, such that these effects can be 
estimated in the Genomic best linear unbiased 
prediction model (GBLUP) (Vitezica et al. 2017).

The aim of this study is to estimate genetic ef-
fects and variance components using SNP markers, 
including non-additive effects, and evaluate the 
reliability of prediction by considering additive, 
non-additive, and both effects in the model using 
methods listed and real data, heterogeneous stock 
(HS) mice data, build 37, to illustrate the principles.

MATERIAL AND METHODS 

Animals. The data (genotype and phenotype file) 
from eight HS mice founders, which had passed 
50 generations of pseudorandom breeding, were 
used for genomic prediction and variance compo-
nent estimation of additive and dominance effects 
using SNP markers. In order to know the structure 
of HS mice population, a genealogy investigation 
was performed. The population consisted of 172 
dams and 172 sires and 1994 progeny with 0.0041 
average numerator relationships. Pedigree extended 
over 2284 individuals. This genealogy was organ-
ised into 165 full-sib families with 11.7 offspring 
on average.

Genotype. We selected SNPs across the genome 
that distinguish between the eight HS founders. We 
used datasets to select SNPs that are validated and 
polymorphic in at least some of the HS founders. 
Data are freely available at http://mtweb.cs.ucl.
ac.uk/mus/www/mouse/HS/index.shtml. This popu-
lation is valuable for testing genome-wide studies 
because, due to the high number of markers, it is 
expected that many (about three of every five) QTL 
loci will be in complete linkage disequilibrium (LD) 
with marker loci (Mott et al. 2000). Only animals 
with available phenotype and genotype were used 
for data analysis. Our data set was composed of 1940 
individuals with 12 226 polymorphic loci (SNPs). 
Genotypes with minor allele frequency lower than 

0.001 were excluded. These missing values should 
have a negligible effect on the analysis.

A script code in R package was used in order to 
convert original genotype format to a format read-
able for software. The coding for SNP genotypes 
was done as follows: always A1A1 = 0, A1A2 = 1, 
and A2A2 = 2, where ‘0’ and ‘2’ denote the two 
homozygous genotypes and ‘1’ denotes the het-
erozygous genotype. Any other number denotes a 
missing SNP genotype and results in zero in matrix 
construction. For the dominant component coding 
for SNP genotypes A1A1, A1A2, and A2A2 were 
set 0, 1, and 0, respectively.

Traits and phenotypes. The phenotype file contains 
four quantitative diabetes-related traits (weight at 
10 weeks, growth slope, body mass index (BMI), and 
body length) which were used as response variables. 
All probable covariates and fix effects according 
to a model menu presented in data package were 
previously tested for affecting traits and significant 
covariates and fixed effects for each trait were in-
cluded in the main models. These covariates were 
sex for weight and growth slope, and body weight, 
season, month and day for BMI and body length. 

Statistical method and models. Limited meth-
ods on genomic prediction and variance component 
estimation of dominance were available. Genomic 
best linear unbiased prediction (GBLUP) and vari-
ous Bayesian methods are available for genomic 
prediction; GBLUP generally had good performance 
in real data (de los Campos et al. 2013). Restricted 
maximum likelihood estimation (REML) and Gibbs 
sampling in the case of small sample size, which 
has been a widely accepted method for estimat-
ing variance components, were used in this study. 
Three methods, with an expansion of the additive 
model to dominance and epistasis in four seniors, 
were applied. Seniors were as follows:

(MA): Y = μ + XB + gA + e

(MD): Y = μ + XB + gD + e

(MAD): Y = μ + XB + gA + gD + e

(MADE): Y = μ + XB + gA + gD + gE + e

where:
μ	 = overall mean
XB	 = fixed effects
gA, gD, gE	  = additive, dominance, epistasis effects, 

respectively
e	 = error
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MA includes genomic information in order to 
estimate additive effects (gA) on marker genotypes, 
MD estimates just dominance effects (gD), MAD 
considers both additive (gA) and dominance (gD), 
and MADE adds epistasis effects (gE) to the MAD 
scenario. A simple Genomic prediction and vari-
ance component estimation method (GVCBLUP), 
an Expansion of Natural and Orthogonal Interac-
tions (NOIA) approach, and a method including 
epistasis effects (PEPIS) are three methods by 
which the scenarios were analysed. PEPIS was 
carried out using a web server-based tool, the 
Pipeline for estimating epistatic genetic effects, for 
analysing the epistatic effects (Zhang et al. 2016). 
The method of including epistasis effects, PEPIS, 
is performed by dividing the analysis into two 
parts: the first part, calculating six kinship matrix 
(Ka, Kd, Kaa, Kad, Kda, Kdd), and a second part, 
calculating six component ratio estimations and 
further genome scanning for main and epistasis 
genetic effects.  

All analyses in the simple Genomic prediction 
and variance component estimation framework 
were carried out using the GVCBLUP computer 
package for genomic prediction and variance com-
ponent estimation of additive and dominance ef-
fects using SNP markers (Wang et al. 2014) and 
GIBBSF90 software. GVCBLUP method models are 
re-parameterised models of the original quantita-
tive genetics model using a re-parameterised µ, 
under the assumption of equal allele frequencies. 
Re-parameterised models are the basis for the SNP 
coding of 0-1-2 for additive effect and 0-1-0 coding 
for dominance effect (Yang et al. 2014). GVCBLUP 
was set to use AI-REML for estimating variance 
components. If AI-REML produced any negative 
estimate of variance components, the program 
returned to EM-type REML automatically. The 
AI-REML algorithm is fast but is not as reliable 
as the EM type. The number of iterations was set 
at 1 000 000. Estimated additive and dominance 
effects of SNP markers were then printed in an 
output file to be directly used as the input file for 
graphical viewing of marker effects by SNPEVEG 
(Wang et al. 2012), including Manhattan plots and 
figures by chromosome. 

Because genetic effect covariates in practice are 
highly correlated, variance estimates by GVCBLUP 
method may be inflated in both joint model (MAD) 
and single component model (MA, MD). To deal 
with these issues, we used two additional methods. 

First, we did an Expansion of NOIA orthogonal 
approach that builds incidence matrices based on 
genotypic frequencies in order to include genome-
wide epistasis in genomic evaluation according 
to the method of Vitezica et al. (2017). Later the 
analysis was done with only fits epistasis effects 
using the method of Zhang (2016). The orthogonal 
estimation method is a development of a gen-
eral procedure to estimate “genomic” relation-
ship matrices for interaction terms of any order 
expanding the NOIA approach (Alvarez-Castro 
and Carlborg 2007). To do this and because of a 
small number of samples, the (co)variance com-
ponents and genetic parameters were estimated 
through the Gibbs sampler algorithm by using the 
GIBBSF90 software. A total of 1 000 000 samples 
were generated, assuming a burn-in period of 
100 000 iterations. The convergence was assessed 
by Geweke test using POSTGIBBSF90 software 
(Misztal et al. 2002). Orthogonal group models 
were set considering just additive effect (NOIA: 
MA), both additive and dominance effects (NOIA: 
MAD), and epistasis effect (NOIA: MADE).

Statistical significance of the associations be-
tween SNPs and traits was tested based on Bon-
ferroni-corrected P-values. This method treats 
individual tests as independent and thus is very 
conservative. Aiming for an overall false positive 
rate of 0.05 and considering 12 500 independent 
tests, the point-wise P-value should be between 
0.0001 and 0.0004. In this article, individual SNPs 
with a P-value of 0.0001 or lower were considered 
statistically significant.

RESULTS AND DISCUSSION

Estimate of variance components. Estimates 
of variance explained and their standard errors 
for different traits and methods are shown in 
Table 1. After estimation of SNP effects, addi-
tive, dominance, epistasis, and residual variances 
were estimated using the complete set of SNPs. 
Genetic variances were estimated using the ad-
ditive genomic relationship (MA), dominance 
genomic relationship (MD), both additive and 
dominance genomic relationship (MAD) and all 
kinship matrices, Ka, Kd, Kaa, Kad, Kda, Kdd 
(MADE) for each trait. Table 2 shows more details 
of the orthogonal estimation of variance explained 
according to their importance in the joint model 
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or single component model. Estimates of the par-
titioning of the genetic variance clearly differ; for 
instance, under the GVCBLUP MA and MAD, the 
proportions of genetic variance explained by ad-
ditive genetic variance were 100 and 83.2% while 
these values were estimated at 100, 67, and 3.9% 
by NOIA: MA, NOIA: MAD, NOIA: MADE mod-
els, respectively. As was expected, the standard 
error (SE) of estimates was greater in GVCBLUP 
than in orthogonal estimation. This may be due 
to a desirable property in modelling and amount 
of statistical information to estimate variances 
which is greater with orthogonal than with non-
orthogonal models.

Generally, the models perform better in esti-
mating variances when non-additive effects are 
included. As shown in Table 2, the models with 
non-additive effects had a lower value of devi-
ance information criterion (DIC) than models 
with just additive effects, however, estimating 
variance components by GVCBLUP yields biased 
estimates, inflates the total genetic variance. Unlike 
GVCBLUP, NOIA: MA, MAD, and MADE have 
an orthogonal property which is very important 
and useful. As shown in Table 1, in GVCBLUP 
estimations due to the absence of epistatic effects 
in models, the additive variance has the greatest 
contribution to the formation of genetic variance 

which seems to be confounded with additive × ad-
ditive part of epistatic variance. In PEPIS method, 
with the introduction of epistatic effects in the 
models, the highest contribution of genetic vari-
ance is made especially by epistatic variance. But 
in NOIA method, with the independent estimation 
of genetic effects, the results have been moderated 
and the genetic variance explained by epistatic 
effects has been decreased. 

The results of the two methods, GVCBLUP (MA, 
MAD) and NOIA (NOIA: MA, NOIA: MAD, NOIA: 
MADE) models, each one in their own group, were 
compared. The model MAD estimates both the 
additive and dominance variance but the output 
of the MA and MD models is only additive or 
dominance variance, respectively. Two additive 
variances estimated from MAD, MA and two 
dominance variances estimated from MAD, MD 
in each trait were compared. Estimates of additive 
variance for end weight and BMI obtained from 
MAD were similar to those obtained from MA but 
the variances for growth slope and body length 
were estimated differently (P < 0.01). Estimates 
of dominance variance obtained using the MAD 
model for all traits were completely different from 
those using the MD model (P < 0.01). Residual 
variances from three GVCBLUP models (MAD, 
MA, and MD) were similar except for growth slope 

Table 1. Estimates of variance explained and their standard errors for different traits and methods1

Trait Model Va/Vg SE Vd/Vg SE Ve/Vg SE

End weight
GVCBLUP-MAD 0.832 0.0229 0.168 0.0166 – –

PEPIS 8.76E-07 0.00066 8.76E-07 0.00066 0.999 0.022
NOIA 0.0393 0.0009 8.77E-02 0.0027 0.8730 0.017

Growth slope
GVCBLUP-MAD 0.7056 0.032 0.294 0.026 – –

PEPIS 0.2787 0.28 0.0121 0.0648 0.7092 0.353
NOIA 0.04427 0.00111 0.06412 0.00197 0.8916 0.017

Body mass 
index

GVCBLUP-MAD 0.854 0.0227 0.1458 0.0243 – –
PEPIS 0.000207 0.01 0.000207 0.01 0.999 0.022
NOIA 0.00746 0.00014 0.0373 0.00105 0.9552 0.015

Body length
GVCBLUP-MAD 0.85 0.023 0.1494 0.0239 – –

PEPIS 0.000207 0.010 0.000207 0.010 0.999 0.022
NOIA 0.161 0.00042 0.0663 0.00157 0.7726 0.015

GVCBLUP-MAD = simple genomic prediction and variance component estimation method (GVCBLUP) considering both 
additive and dominance effects, NOIA = Expansion of Natural and Orthogonal Interactions (NOIA) approach, PEPIS = method 
including epistasis effects; Va, Vd, Ve, Vg and SE are additive, dominance, epistasis, genetic variance, and related standard 
error, respectively 
1GVCBLUP method considering additive and dominance effect, NOIA and PEPIS with additive, dominance, and epistasis 
effect were presented
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(P < 0.01). Comparison of estimated variance by 
the NOIA group models (Table 2) confirmed the 
results previously estimated by GVCBLUPs, with 
the difference that the estimates were shrinking. 
Additive variances for end weight and BMI ob-
tained from NOIA: MADE were similar to those 
obtained from NOIA: MA, but these variances 
for growth slope and body length were estimated 
differently (P < 0.01). Generally, dominance vari-
ances estimated by GVCBLUP-MAD compared 
to MD were small for all traits except for growth 
slope in which dominance variance accounted for 
29.5% and slightly less than 10%, of the genetic 
and phenotypic variance, respectively. Based on 
our results, the estimated dominance variance in 
proportion to additive genetic variance was about 
20, 42, 17, and 17.5%, respectively, which is in the 
range of variances reported in several previous 
studies using a model with or without a pedigree-
based relationship matrix. For instance, in pigs, 
significant contributions of non-additive genetic 
variance have been reported. The ratios of domi-
nance variance to additive genetic variance ranged 
from 11 to 31% for reproductive and growth traits 
in Yorkshire pigs (Su et al. 2012). In pigs, it was 
reported that the proportion of non-additive vari-
ance relative to the entire QTL variance exceeded 
50% in most meat quality and carcass composition 
traits in a porcine Duroc × Pietrain population 

(Grosse-Brinkhaus et al. 2010). In beef cattle, the 
ratio of dominance variance to additive genetic 
variance was larger than 50% for weaning weight 
in Hereford, Gelbvieh, and Charolais beef cattle 
(Duangjinda et al. 2001). In chicken, QTL analysis 
revealed that the non-additive genetic effect was 
more pronounced prior to 46 days of age, whereas 
additive genetic effect explained the major portion 
of the genetic variance later in life (Carlborg et al. 
2004). In orthogonal models, the contribution of 
non-additive effects has increased in the creation 
of genetic variance. With NOIA: MD model non-
additive goes into two parts: first, contributes to 
informing dominance and second, ambiguously 
mixes with additive variance, however with includ-
ing epistasis most of the genetic variance goes to 
an epistatic section of variances. Hence, epistasis 
variances, especially additive × additive interac-
tion, account for a greater proportion (87.3, 89.1, 
95.5, and 77.2% for end weight, growth slope, BMI, 
and body length, respectively) of genetic variation. 
There is a large variation between the estimates of 
non-additive genetic variances in different studies, 
which may depend on the different genetic archi-
tecture of various traits and populations. In addi-
tion, the large variation could be caused by a large 
sampling error due to insufficient data information. 
The study methods, as shown here, may lead to a 
variation in estimations. 

Table 2. Variance explained estimated by the NOIA method and different scenarios

Trait Model Va/Vg SE Vd/Vg SE Ve/Vg SE DIC

End weight
MADE 0.0393 0.0009 8.77E–02 0.0027 0.8730 0.017 9434.7
MAD 0.67076 0.19015 0.32924 0.19015 – – 9518.04
MA 100 – – – – – 9523.8

Growth slope
MADE 0.04427 0.00111 0.06412 0.00197 0.8916 0.017 –5978.88
MAD 0.43885 0.17923 0.56115 0.17923 – – –6159.17
MA 100 – – – – – –6135.67

Body mass 
index

MADE 0.00746 0.00014 0.0373 0.00105 0.9552 0.015 –5399.13
MAD 0.18936 0.21337 0.81064 0.21337 – – –5560.53
MA 100 – – – – – –5411.72

Body length
MADE 0.161 0.00042 0.0663 0.00157 0.7726 0.015 3143.91
MAD 0.53269 0.2275 0.46731 0.22746 – – 3162.46
MA 100 – – – – – 3168.52

MADE = single nucleotide polymorphism (SNP) marker model considering additive and non-additive (dominance and epista-
sis) effects, MAD = SNP marker model considering additive and non-additive (dominance) effects, MA = SNP marker model 
considering additive effects; Va, Vd, Ve, Vg and SE are additive, dominance, epistasis, genetic variance and related standard 
error, respectively; DIC = deviance information criterion
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As shown in Figure 1A, the standard errors of 
non-additive genetic variance were large. The 
relative standard errors for the estimated domi-
nance variance were 1.7, 2.6, 3.5, and 4.8 times 
as large as the standard errors for the estimated 
additive genetic variance for growth slope, end 
weight, body length, and BMI, respectively. These 
relative standard errors derived from orthogonal 
models were 1.6, 1.9, 1.0, and 1.0 times greater 
if compared to GVCBLUPs, respectively. These 
results suggest that a large dataset is needed in 
order to get accurate estimates of non-additive 
genetic variances.

These results illustrate the difficulties in obtain-
ing a good estimate of non-additive variance from 
genomic information. Despite the difficulty of ac-
curate estimates, results show how genomic infor-

mation allows one to obtain an accurate estimation 
of non-additive deviations. Further, in practice, 
use of non-additive through the implementation of 
mate allocations using markers is straightforward, 
contrary to pedigree-based methods. 

Classic estimates of heritability require pedigree 
data, which can be costly and difficult to acquire. 
As genome-wide data became widely available, 
genome-wide complex trait analysis has been 
developed, which provides an SNP-based herita-
bility estimate. In this study using SNP markers 
and fitting of variance components, the common 
heritability, the additive heritability or heritability 
in the narrow sense h2

A, the dominance heritabil-
ity h2

D, and the heritability in the broad sense H2 
were estimated for traits in different models. The 
proportions of additive, dominance, and epista-

Figure 1. (A) Proportion of standard error to related variance estimated by conventional and orthogonal NOIA model. 
SE/Va, SE/Vd, and SE/Ve = proportion of related standard error to additive, dominance and epistatic variance, respec-
tively. (B) Genetic and phenotypic variance explained for different traits estimated by conventional and orthogonal 
NOIA model. Vd/Vg, Vd/Vp, Ve/Vg, Ve/Vp indicate genetic and phenotypic variance explained by dominance and 
epistatic variance
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sis variance explaining genetic variance for dif-
ferent models and traits were also presented in 
Table 1. The proportions explained by dominance 
in GVCBLUPs ranged from 14.7% for BMI to 29.5% 
for growth slope. All estimated dominance vari-
ances differed from zero (P < 0.01). When the 
epistasis effects were included in the models, the 
proportions explaining dominance decreased, 
however, non-additive effects still accounted for 
the majority of genetic variability in most traits. 
The proportion of genetic and phenotype variance 
explained by dominance and epistasis variance in 
GVCBLUP and NOIA model is shown in Figure 1B. 
Orthogonal models show lower level of genetic 
and phenotypic variance explained by dominance 
(Vd/Vg and Vd/Vp), in comparison with GVCBLUP 
which confirms shrinkage estimation of variances 
by the orthogonal method. The method develops a 
general procedure to estimate “genomic” relation-
ship matrices for interaction terms of any order 
expanding the NOIA approach. GVCBLUPs esti-
mation of H2 was higher in MAD models for all 
traits compared with MA and MD model, whereas 
just one of the additive or dominance effects has 
been included in the model. Estimated values of 
h2

A ranged from 0.1 to 0.322 for all traits and were 
almost similar in both MAD and MA model with 
small SE. Estimates of h2

D were higher in dominance 
model compared to the MAD model for all traits. 
These estimated heritabilities ranged from 0.035 to 
0.25 and were completely different in MAD and 
MD models. SE of estimated h2

D with MD model 
were relatively high. Estimates of the proportion 
of additive, dominance, and total genetic variance 
to phenotypic variance (e.g., h2

D, h2
D, H2), which 

were calculated for each SNP, are presented across 
chromosome (in %) (Figure 2). Heritabilities pre-
sented for all traits and models show an inflated, 
higher level of additive heritability estimation by 
MA model compared to MAD model, which may 
be due to confounding non-additive with the ad-
ditive in the absence of dominance and epistasis in 
the model. The heritability level in the orthogonal 
models was much lower than in the others due 
to shrinkage estimation of variances. Estimated 
values of H2 were 1.12, 1.67, 3.64, and 2% for end 
weight, growth slope, BMI, and body length, re-
spectively in which non-additive heritability had 
a significant contribution. Generally, end weight 
and growth slope were more heritable than BMI 
and body length. The comparison of heritability 

of end weight and growth slope revealed that end 
weight had a higher level of additive heritability 
despite the proximity of the total inheritance (H2) 
indicating end weight is controlled more additively 
than growth slope.

Genome-scale data provide an opportunity to 
estimate relatedness of individuals using molecu-
lar data and then using estimated relatedness to 
infer heritability from the proportion of pheno-
typic variance explained by genotyped SNPs (Yang 
et al. 2014). Genetic markers can help estimate 
heritability in novel ways. When phenotypes are 
collected on a sample of individuals whose relat-
edness is partially or wholly unknown, genetic 
markers can be used to infer relatedness between 
pairs of individuals, because related individuals 
tend to share more marker alleles than unrelated 
individuals. The inferred relatedness can then be 
correlated with phenotypic similarity, and quan-
titative genetic parameters, including heritability, 
can be estimated. This method has been applied 
in evolutionary studies to estimate heritability 
for quantitative traits in fish and plants when 
phenotypes and SNP markers are available but 
pedigree information is not. The use of the pedi-
gree data leads to an estimate of total heritability 
whereas the use of SNPs to construct a marker 
relationship matrix and estimating the genetic 
variance and therefore heritability explained by 
the SNPs. The new whole genome methods have 
shown that large numbers of genetic variants with 
small effect explain a substantial proportion of the 
heritability for complex traits. Valdar (2006) fitted 
a standard additive genetic, common environmen-
tal error, unique environmental error model to 
obtain estimates of the proportion of phenotypic 
variance attributable to additive genetic effects. 
The estimations of heritability for end weight, 
growth slope, BMI, and body length were 0.623, 
0.305, 0.132, and 0.213, respectively. Estimated 
heritabilities in this study using GVCBLUPs for 
end weight, growth slope, and BMI (0.304, 0.22, 
0.108) were lower than and heritability for body 
length (0.21) was close to those shown by Valdar 
(2006). The difference may be due to using just 
SNPs to construct a relationship matrix in order 
to estimate the genetic variance and therefore 
models captured the heritability explained by 
the SNPs were included in the analysis. These 
results indicating SNPs marks explain a substantial 
proportion of the heritability for complex traits.
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The proportion of genetic variance explained by 
the SNPs depends on the structure of the data (e.g. 
related and unrelated individuals), the architecture 
of traits, linkage equilibrium (LE) or LD between 
SNPs, a factor that generates non-independency 
between loci and lack of orthogonality. So heri-
tability estimates derived through these meth-
ods could differ in precision and possible bias. 
Generally, close relatives give more precision but 
potentially more bias, whereas distant relatives 
give less precision and less bias. Bias in analyses 
of close relatives may come from environmental 
variation that is confounded with additive ge-
netic variation within families, or in the case of 
siblings, confounding with non-additive genetic 
effects (Vinkhuyzen et al. 2013). The LD affects the 
partition into additive, dominance, and epistatic 
components, such that an orthogonal partition is 
not possible. LD may introduce genetic covariance 
between different genetic effects and complicates 

the definition of genetic effects and the partition 
of the genetic variance, in particular in the pres-
ence of epistasis (Vitezica et al. 2017). Using more 
density SNP chips such as the whole sequence and 
large sample size should help find the remain-
ing missing heritability, that is, the difference 
between the heritability estimates from pedigree 
studies and the heritability estimated from SNPs. 
Sequence data could be more powerful in traits 
where causal variants are rare.

Genome-wide association studies (GWAS) 
fitting additive and dominance. The Manhattan 
plot of the –log10 (P-values) of SNP dominance 
and additive effects estimated by MAD GVCB-
LUP for all traits are in Figure 3. The number of 
SNPs showing only a significant (P < 10−4) ad-
ditive or dominance effect and those showing 
both additive and dominance effects simultane-
ously in the training population for each trait and 
model are given in Table 3. For instance, for end 

Figure 2. Percentage of heritability explained by single nucleotide polymorphisms estimated by MAD model for different 
traits. H2_mrk (%) = percentage of heritability in broad sense, H2_mrk_A (%) = additive heritability, h2_mrk_D (%) = 
dominance heritability for different traits: end weight, growth slope, body mass index, and body length, respectively

Chromosome Chromosome

(%
)
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Figure 3. Manhattan plots of additive and dominance effects
a – end weight, b – growth slope, c – body mass index, d – body length; numbers 1 and 2 are for additive and domi-
nance effects, respectively; effects estimated by a model considering both additive and dominance (MAD model); 
x-axis shows chromosome number and y-axis shows –log (P-value)
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weight, in GVCBLUP-MAD 12, 100, and 7 SNPs 
had significant additive, dominance, and both 
effects, respectively (P < 10−4). The number of 
SNPs with a significant additive effect on all traits 
using GVCBLUP-MAD was slightly lower than 
the number of SNPs detected by GVCBLUP-MA. 
However, GVCBLUP-MAD and MD performed dif-
ferently in detecting SNPs with dominance effects 
on traits. The number of significant SNPs with 
a dominance effect resulting in GVCBLUP-MD 
was lower if compared to GVCBLUP-MAD. Analy-
sis and comparison of residual variances in the three 
models (MAD, MA and MD) for all traits showed 
that MAD estimates smaller residual variance for 
end weight (3.68 vs 4.6) and body length (0.018 vs 
0.026) compared to MD (P < 0.01), therefore the 
discovery power in MAD is higher, while the vari-
ances explained in MAD and MA are close and so 
are the discovery powers. Some biological evidence 
from the National Center for Biotechnology In-
formation databases supports the GWAS findings 
of the present authors associated with the traits. 
Tests of association may be based on individual 
SNPs, but not on the sets of neighbouring SNPs. 
For example, rs8255002, known as one of top ten 
SNP markers (additive) significantly associated 
with end weight, is a C/T single-nucleotide varia-
tion on mouse chromosome 8: 121999608, Banp 
gene, which is associated with mouse muscles.

The number of SNPs, that simultaneously showed 
both additive and dominance effect on traits, was 
detected to be 498 of 6340 significant SNPs. Also, the 
results revealed that the numbers of SNPs control-
ling growth slope and BMI across all models were 
greater than those controlling end weight and body 
length (P < 10−4). These results, and considering 
the average of all significant SNPs effects related 
to each trait, show that these two traits tend to be 

controlled by greater numbers of SNPs with a smaller 
effect if compared to end weight and body length.

Based on additive and dominance SNP effects 
estimated by all models for all traits, ten SNPs with 
the largest effect were characterised. All significant 
SNPs and top largest additive and dominance SNPs 
by chromosome, traits and models are presented in 
Supplementary Tables S1 to S8 – for supplementary 
material see the electronic version. The first five 
SNPs with the largest additive and dominance effects 
detected by MAD and MA models for end weight 
were the same and are located on chromosomes 7, 
8, 10, 15, 18, respectively. In addition, according 
to the number and type of significant SNPs, the 
performance of models in detecting the same SNPs 
affecting the traits was investigated. The numbers 
of common significant additive SNPs in MAD and 
MA models for end weight, growth slope, BMI, and 
body length were 5, 25, 30, and 45, respectively. 
Similarity common significant dominance SNPs 
between MAD and MD models for end weight, 
growth slope, BMI, and body length were reported 
to be 25, 30, 42, and 56, respectively. 

Statistical significance of the association of SNPs 
was determined based on Bonferroni-corrected 
P-values. This method treats individual tests as 
independent and thus is very conservative. Aim-
ing for an overall false positive rate of 0.05 and 
considering 12 500 independent tests, the point-
wise P-value should be between 0.0001 and 0.0004. 
In this article, individual SNPs with P-value of 
0.0001 or less were considered statistically sig-
nificant. In order to identify common signifi-
cant SNPs among traits, a pairwise comparison 
between traits was performed (Table 4). Several 
SNPs on chromosome 17 had both large additive 
and dominance effects for end weight. Three SNPs 
on chromosome 17 had large dominance and ad-

Table 3. Significant single nucleotide polymorphisms (SNPs) in different traits and models (P < 10–4)  

Models MAD MA MD 

Traits A D A&D A D A&D A D A&D
End weight 12 100 7 13 – – – 63 –
Growth slope 424 1120 126 343 – – – 586 –
Body mass index 677 3490 357 679 – – – 1240 –
Body length 36 481 8 33 – – – 208 –

MAD = SNP marker model considering additive and non-additive (dominance) effects, MA = SNP marker model considering 
additive effects, MD = SNP marker model considering just dominance effect; A, D and A&D are the numbers of SNPs that had 
significant additive, dominance, and both effects, respectively

https://www.agriculturejournals.cz/publicFiles/268417.pdf
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Figure 4. Additive and dominance effects of chromosome 8
a – end weight, b – growth slope, c – body mass index, d – body length;  numbers 1, 2, and 3 show additive, dominance, 
and additive and dominance model, respectively, by which SNP effects were detected; x-axis shows SNPs number 
over the chromosome 8 and y-axis shows –log (P-value)
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ditive effects for end weight and growth slope. 
Chromosomes 7, 8, and 10 each had one SNP 
with a large dominance and additive effect for 
end weight, and similarity chromosome 5 had one 
SNP with a large additive and dominance effect 
for end weight, BMI, and body length. The most 
common chromosome 8 had the largest additive 
and dominance effect on all traits. Figure 4 illus-
trates chromosome 8 SNPs effects detected by the 
three models. The growth slope and BMI had 46 
common additive SNPs that show this trait tends 
to be correlated more additively than the other 
traits. Also, it could be concluded that BMI and 
body length are correlated with other traits through 
non-additive genetic effects. Generally, SNPs with 
large additive effects were easily detected by both 
MAD and MA model so that they were common 
in both models. But SNPs with small effect were 
determined differently by the models. 

The genomic best linear unbiased predictions 
including additive, dominance, and both genetic 
effects termed GBLUPA, GBLUPD, and GBLUPG, 
respectively, are in Table 5. Reliabilities of estimated 
additive GBLUPs in different traits ranged from 
44.8 to 66.6% for the MAD model, and 46.1 to 69% 

for the MA model, respectively. These reliabilities 
were also estimated for dominance GBLUPs and 
ranged from 6 to 26.4% for the MAD model and 
22.5 to 50.5% in the MA model. The MA model 
led to the higher reliability for estimated additive 
GBLUPs compared to MAD. The same pattern 
was observed in reliability for estimated domi-
nance genetic effect, that is, reliability estimated 
by MD was higher than that estimated by the MAD 
model. Results showed that differences in reliabil-
ity of GBLUPA estimated using MAD and MA for 
all traits were not significant, except for growth 
slope (P < 0.01). Estimations of GBLPDs despite 
low reliability for all traits were different across all 
models. A much larger and significant reliability 
was only observed in growth slope, a situation in 
which there is a relatively high dominance to ad-
ditive effect ratio. Given that a high proportion of 
genetic variance is additive and to comply with the 
GBLUPA estimations, GBLUPGs were not different 
across models for all traits except for growth slope. 
These and the highest estimation for GBLUPD 
could be due to that growth slope is more affected 
by dominance compared to other traits. In our 
study, considering estimated non-additive genetic 
variances, the gain in the reliability of genomic 
predictions by including non-additive genetic ef-
fects in the prediction model was almost nothing. 
These results were in contrast to Su (2012) and 
Zeng (2013) that have shown, even when purely 
additive effects were evaluated, the inclusion of 
dominance in the genomic evaluations did not 
decrease the accuracy of prediction. Others have 
recently reported that the prediction of dominance 
deviation from SNP information is not as accurate 
as that reported for breeding values (Nishio and 
Satoh 2014). However, the use of larger training 
populations (Wittenburg et al. 2015) or the adop-
tion of training populations where loci with higher 

Table 4. A pairwise comparison between traits to identify 
common significant single nucleotide polymorphisms 
(SNPs) (P < 0.0001)  

Traits End 
weight

Growth 
slope

Body mass 
index

Body 
length

End weight 2 4 0
Growth slope 81 46 4
Body mass index 83 679 8
Body length 73 298 370

above diagonal: the number of additive common SNPs; below 
diagonal: the number of dominance common SNPs

Table 5. Reliability of GBLUPs in different traits and models

Models MAD MA MD
Traits GBLUPA GBLUPD GBLUPG GBLUPA GBLUPD GBLUPG GBLUPA GBLUPD GBLUPG

End weight 0.666 0.196 0.655 0.69ns – 0.69ns – 0.436 0.436**
Growth slope 0.604 0.264 0.599 0.654** – 0.654** – 0.505 0.505**
Body mass index 0.448 0.06 0.425 0.461ns – 0.461ns – 0.225 0.225**
Body length 0.567 0.114 0.547 0.593ns – 0.593* – 0.312 0.312**

MAD = SNP marker model considering additive and non-additive (dominance) effects, MA = SNP marker model considering 
additive effects, MD = SNP marker model considering just dominance effect, GBLUPs = Genomic best linear unbiased predic-
tion; A, D and G show GBLUPs estimated by considering additive, dominance, and both effects
*P < 0.05, **P < 0.01, ns = not significant
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minor allele frequency occur (and therefore more 
heterozygotes are available for dominance estima-
tion) may improve predictions.

In order to evaluate the performance of models 
in ranking animals using GBLUPs, correlations 
(Spearman) between synonymous GBLUPs esti-
mated by different models have been calculated. 
Correlations between GBLUPA estimated by MAD 
and MA models for all traits were high and ranged 
from 0.982 to 0.997. Similarity correlations between 
GBLUPD estimated by MAD and MD models were 
calculated. These correlations were lower than 
those for GBLUPAs and ranged from 0.687 to 0.898. 
MAD and MA models had a similar performance in 
ranking animals according to estimated GBLUPGs 
and comparing MAD vs MD model and MA vs 
MD model showed a moderate similarity in rank-
ing animals. 

However, including dominance in models could 
still be beneficial, for example, in predicting disease 
risk in humans (Wray et al. 2007) or for establish-
ing mating strategies in plant or animal breeding 
aimed at maximising the phenotypic performance 
of the (crossbred) offspring. Also, the incorporation 
of dominance effects is critical for the introduc-
tion of breeding approaches that aim to create 
crosses with complementary alleles in mate-pair 
allocation (Munoz et al. 2014). In addition, using 
dominance in genomic evaluations is expected to 
result in greater cumulative response to selection 
of purebred animals for crossbred performance 
than additive models, especially in the presence 
of overdominance and when retraining is not per-
formed at each generation (Zeng et al. 2013).

Compared to the pedigree-based relationship ma-
trix, the genomic relationship matrix can capture 
both Mendelian segregation and the genetic links 
through unknown common ancestors, which are 
not available in the known pedigree. Furthermore, 
the genomic relationship matrices are applicable 
for different populations with or without pedigree 
information, which is particularly advantageous 
in studies on wild populations or human popula-
tions (Visscher et al. 2010).

The lack of improvement by including domi-
nance effect using SNP markers in some traits 
and slightly better performance in other traits 
indicates the difficulty in distinguishing additive 
and non-additive genetic effects. Also, it could 
indicate that traits with a large variance of addi-
tive effects were influenced little by the inclusion 
of dominance, but greatly for the traits with a lot 
of dominance effects.

CONCLUSION 

Using SNPs dense markers and phenotype solely 
without pedigree information provides a new ap-
proach to detect additive and dominance genetic 
variation and predict genetic merit. This study evalu-
ated a GBLUP framework, and orthogonal for using 
marker-based information in genomic predictions 
involving both additive and non-additive effects. 
Also, the current and previous studies have shown 
that non-additive genetic variance is remarkable in 
complex traits. The advantage of using SNPs marker 
is that fitting a genome-enabled prediction model 
on just SNP information is beneficial especially 
for species in which there is a lack or unreliable 
pedigree information. Using SNPs and including 
non-additive in models despite decreasing the reli-
ability of GBLUPs estimation could still be beneficial 
for establishing mating strategies in plant or ani-
mal breeding aimed at maximising the phenotypic 
performance of the crossbred offspring. Thus using 
models unbiased estimation of total genetic value 
that includes additive and non-additive effects can 
be an effective tool for predicting an individual and 
future offspring’s total genetic potential and phe-
notype. This may lead to more genetic progress in 
selection and mating systems. The beneficiality of 
using SNPs and including non-additive in models 
depends on the architecture of traits and different 
heritability of traits. In human context, considering 
results of this study, following significant SNPs af-
fecting diabetes-related traits by post-genome wide 
studies could reveal unknown aspects associated 
with genetical control of the disease.
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