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ABSTRACT: When analyzing phenotypes undergoing a complex mode of inheritance, it is of great interest to 
switch the scope from single genes to gene pathways, which form better defined functional units. We used gene 
networks to search for physiological processes and underlying genes responsible for complex traits recorded in 
dairy cattle. Major problems addressed included loss of information from multiple single nucleotide polymor-
phisms (SNPs) located within or close to the same gene, ignoring information on linkage disequilibrium and 
validation of the obtained gene network. 2601 bulls genotyped by the Illumina BovineSNP50 BeadChip were 
used. SNP effects were estimated using a mixed model, then underlying gene effects were estimated and tested 
for significance, subsequently a gene network was constructed and the functional information represented by the 
network was retrieved. The networks were validated by repeating the above-mentioned analyses after permuta-
tion of bulls’ pseudophenotypes. Effects of 4345 genes were estimated, what makes 16.4% of all genes mapped to 
the UMD3.1 reference genome. Assuming the maximum 10% type I error rate, for milk yield 50 different gene 
ontology (GO) terms and three pathways defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
significantly overrepresented in the real data as compared to the permuted data sets, while for fat yield nine of 
the GO terms were significantly overrepresented in the real data network, although none of the KEGG pathways 
reached the significance level. In turn, for protein yield 28 of the GO terms and six KEGG pathways were signifi-
cantly overrepresented in the real data. Based on the physiological information we identified sets of loci involved 
in the determination of milk yield (224 genes), fat yield (72 genes), and protein yield (546 genes). Among the genes 
some have large effects and have already been reported in previous studies, whereas some others represent novel 
discoveries and thus most probably genes with medium or small effects on trait variation.
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INTRODUCTION

The major motivation for this research was to 
identify pathways and genes related to the variation 
of production traits in dairy cattle. This was done 
by using a novel approach where gene networks 
are built upon estimates of gene effects, and by 
using permutations to estimate the relevance of 
found gene networks.

Genetically, production traits represent complex 
phenotypes typically determined by several genes 
with large effects – the so-called major genes or 
quantitative trait loci (QTL), a number of genes with 
intermediate effects and a large number of genes, 
each with a very small effect, cumulatively known as 
polygenes. A traditional way to identify those genes 
is to apply genome-wide association analysis (GWAS) 
(Bolormaa et al. 2010) or genomic selection models 
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(VanRaden 2008). However, two major drawbacks 
of GWAS when applied to traits with a complex 
mode of inheritance include difficult selection of 
significant polymorphisms among single nucleotide 
polymorphisms (SNPs) intercorrelated through link-
age disequilibrium (LD) and poor reproducibility of 
results across methods. As a multiple SNP method, 
the genomic selection approach accounts for SNP 
intercorrelation, but suffers from the problem of 
shrinking SNP estimates to a preimposed, usu-
ally normal, distribution. Anyhow, by applying the 
aforementioned methodology to data sets currently 
available for research, which are very informative 
thanks to the large number of SNPs and individuals, 
it is usually relatively easy to identify major genes. 
Moreover, in some studies which use very large data 
sets, comprising thousands of phenotyped individu-
als and their genotypes, researchers are even able 
to identify genes with medium effects. However, 
it is still very difficult to pinpoint genes with small 
effects. For this purpose some bioinformatics tools 
can be applied such as the gene network approach, 
which profits from the information stored in pub-
licly available databases, or methods based on the 
gene set enrichment analysis (GSEA).

When analyzing phenotypes undergoing a com-
plex mode of inheritance it is of great interest 
to switch the scope from single genes to gene 
pathways, which form better defined functional 
units. Therefore, in our study we applied the gene 
network analysis in order to search for functional 
information and genes responsible for milk-, fat-, 
and protein yields in dairy cattle. Methodologically, 
two major problems addressed in this study were: 
(i) accounting for information on LD between 
SNPs linked to the same gene and (ii) validation 
of the obtained gene network. The course of the 
analyses comprises: (i) estimation of SNP effects 
using the SNP-BLUP model, (ii) estimation of 
gene effects based on SNP effects located in the 
vicinity of coding regions and significance testing, 
(iii) construction of gene networks using significant 
genes as a scaffold, (iv) construction of an empiri-
cal null hypothesis distribution for the network 
via permutation, (v) significance testing for the 
overrepresentation of gene ontology (GO) terms 
and pathways defined by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) underlying the gene 
network constructed in step (iii) as compared to 
the set of GO terms and KEGG pathways underly-
ing the null distribution constructed in step (iv).

MATERIAL AND METHODS

Animal data. A total of 2601 bulls from the 
Polish Holstein Friesian dairy cattle breed were 
used in this analysis. The oldest bull was born in 
1981 and the youngest animals were born in 2007. 
This core data was additionally enhanced by the 
information on pedigree relationship of 2 434 590 
individuals and by the information on conventional 
breeding values of 10 355 individuals.

Three traits undergoing a complex mode of in-
heritance were selected for the analysis, i.e. milk-, 
fat-, and protein yields. Milk-, fat-, and protein 
yields are moderately heritable with heritabili-
ties in the Polish Holstein-Friesian population 
estimated at 0.33, 0.29, and 0.29, respectively, and 
have been the most important selection criteria in 
dairy cattle for over 150 years (Lush et al. 1936). 
Since all the phenotypes are measured on cows, our 
analysis utilizes deregressed conventional breed-
ing values of bulls which were estimated based on 
a random regression test day model (Strabel and 
Jamrozik 2006). Deregression was performed fol-
lowing the method of Jairath et al. (1998) in order 
to obtain bulls’ pseudophenotypes independent 
of additive genetic relationship. The means and 
standard deviations for the pseudophenotypes of 
the analyzed bulls amounted to 153.1 ± 547.5 kg 
of milk, 3.6 ± 19.0 kg of fat, and 5.6 ± 15.0 kg of 
protein per lactation.

Bulls were genotyped by the Illumina Bo-
vineSNP50 Genotyping BeadChip, which consists 
of 54 001 SNPs (version 1) and 54 609 SNPs (ver-
sion 2). Genotype samples were provided within 
the frame of the Genomika Polska project and com-
prised semen probes acquired via a routine semen 
collection procedure. After genotype preprocessing 
comprising elimination of SNPs with minor allele 
frequencies of less than 0.01 and call rate under 
90%, 46 267 SNPs were selected for further analysis.

SNP effect estimation. The first step of the 
analysis comprised estimation of effects of SNPs 
on the selected complex traits. This was done 
using the following mixed model:

y = μ + Zg + e	 (1)

where:
y 	 = vector of deregressed conventional breeding values  

of bulls for milk-, fat-, and protein yields, respectively
μ 	 = general mean
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Z 	= design matrix for SNP genotypes, which is parameter-
ized as –1, 0, or 1 for a homozygous, a heterozygous, 
and an alternative homozygous genotype, respectively

g	 = vector of random additive SNP effects
e 	 = vector of residuals

The covariance structure of the model comprises:

g ~ N (0, I     σ
2
a      )  and e~N (0, D ̂σ2

e) 
                 

46267

where:
I 	 = identity matrix
σ̂2

a 	= estimate of total additive genetic variance of a 
given trait calculated elsewhere for the whole 
active population of Polish Holstein-Friesian dairy 
cattle

D 	= diagonal matrix of the reciprocal of the (effective) 
number of daughters of each bull

σ̂2
e 	= estimate of residual variance

The covariance structure of y is as follows:

y = ZGRT + R

where:
G = I     σ

2
e         and R = D  ̂σ2

e 
           

46267

The estimation of parameters of the above model 
was based on solving the mixed model equations 
(Henderson 1984):

 

The iteration on data technique was based on 
the Gauss-Seidel algorithm with residuals update 
(Legarra and Misztal 2008).

Gene effect estimation. In the next step SNP 
effect estimates were enhanced by the information 
on SNP genomic location and LD to form gene 
effect estimates. For each SNP its genomic loca-
tion corresponding to the bovine genome build 
release 68 was retrieved from the Ensembl database 
(http://www.ensembl.org) and the  statistic for 
pairwise LD was calculated using PLINK (Purcell 
et al. 2007) based on genotype correlations. Gene 
effects were then estimated using:

t (2)

where:
ĝi = estimate of ith SNP effect
Nt	= number of SNPs located within the gene or maxi-

mally 1 Kbp from the gene borders
σ2

t 	= variance of a gene effect 

The variance of a gene effect σ2
t  is expressed by:

where:
σ2

q 	=  variance of a SNP effect (identical for all SNPs) 
expressed by (σ2

a/46267) 
r 	  = square root of r2 (i.e. linkage disequilibrium between 

SNP i and j 

If only one SNP is located inside the gene, then 
the following is true:

22∑ ∑ ������������� � ������ = 0     

Asymptotically, the gene effect statistics (t) fol-
lows a standard normal distribution and thus the 
N(0,1) significance thresholds were used to select 
significant genes. Since the major issue of the 
study was focused on genes with small effects, 
we decided that in a trade-off between type I and 
type II errors the latter are much more impor-
tant on the gene selection stage. Consequently, a 
significance threshold of 0.20 was used to select 
genes for further analysis based on t.

Network construction and retrieving functional 
information. Separately for each trait, a network 
was constructed using significant genes for that 
trait as a scaffold. A BisoGenet plugin (Martin et 
al. 2010) for the Cytoscape software (Shannon et 
al. 2003) was used as a tool to build a gene network 
based on the information from the SysBiomics 
database, which integrates such publicly acces-
sible databases as NCBI Entrez Gene, Uniprot, 
BIND, HPRD, Mint, DIP, BioGRID, and Intact. 
Networks were constructed using the significant 
genes as primary input nodes enhanced by addi-
tional nodes, representing genes for which known 
interactions with the input nodes were identified 
in the databases. A network was enhanced by al-
lowing for maximally one new node between the 
original input genes. Since no access to information 
on Bos taurus was available through the software, 
human homologues for the significant genes were 
identified and the Homo sapiens database was used.

Permutation and significance testing. In order 
to assess how reliable a particular network was 
in terms of underlying functional information, a 
null hypothesis distribution of the network was 
constructed empirically based on permutations. 
In this study the functional information describing 
the genetic background of a trait was expressed 
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by GO terms (http://geneontology.org) and KEGG 
pathways (http://www.kegg.jp) underlying genes 
from the network. The empirical null hypothesis 
distribution of the network, which reflects the 
frequency of GO terms and KEGG pathways, was 
constructed based on permutations. For this pur-
pose, for each trait separately, the following steps 
were repeated 100 times in order to approximate 
the distribution: (1) permutation of deregressed 
breeding values (vector y), (2) SNP effect esti-
mation based on the model (1), (3) gene effect 
estimation and testing using the statistic t (2), 
(4) gene network construction, (5) identification 
of functional information (GO terms and KEGG 
pathways) represented by the network.

Testing of the hypotheses regarding the signifi-
cance of a particular GO term or a KEGG path-
way was based on the Odds Ratio (OR) statistics. 
It involved comparing the number of times the 
given feature (GO or KEGG) was represented by 
a gene within the network resulting from original 

(unpermuted) data with the number of times this 
feature was represented in the network resulting 
from permuted data. The underlying assumption 
is that permuted data sets represent empirically 
derived H0 distribution of GO/KEGG:

   (3)

where:
Cx	 = number of times a given GO term or a KEGG path-

way was observed among genes building the original 
(Co) and permuted (Cp) networks

Nx	 = total number of occurrences observed by the features 
in the original (No) and permuted (Np) networks 

The underlying hypotheses can be defined in 
terms of the probability to observe a functional 
feature (GO term or KEGG pathway) in the origi-
nal (Po) and permuted (Pp) data sets, respectively:  
H0 : P0 = Pp and H1 : P0 ≠ Pp . The natural logarithm 
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Figure 1. Standardized addi-
tive effects of single nucleo-
tide polymorphisms (SNPs). 
Absolute values of 46 267 
SNPs for milk yield (MKG), 
fat yield (FKG), and protein 
yield (PKG)
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transformation of OR divided by its standard error 
follows a standard normal distribution, which al-
lows for assessing corresponding P-values. In order 
to circumvent the problem of testing multiple GO 
terms and KEGG pathways, nominal P-values were 
subjected to the Bonferroni correction.

GSEA. Additionally, for the genes identified as sig-
nificant in (2) we performed a GSEA as implemented 
in the KOBAS software (Mao et al. 2005). In order to 
be compatible with aforementioned analyses, Homo 
sapiens genome was chosen as the baseline data set.

RESULTS

SNP effects. Figure 1 shows Manhattan plots of 
additive SNP effect estimates along the genome for 
the three considered traits, rescaled to the standard 
normal distribution and expressed as absolute val-
ues. For milk yield a SNP with the highest estimate 
accounts for 7.60 kg of milk per lactation, for fat 
yield it accounts for 0.41 kg of fat per lactation, 
both attributed to the same SNP located on BTA14 
within an intron of DGAT1, and for protein yield the 
SNP with the highest effect accounting for 0.13 kg 
of protein per lactation is located on BTA06 260 bp 
downstream of Alpha-S2-casein Casocidin-1.

Gene effects. Effects of 4345 genes were estimated, 
but due to a relatively low SNP density of the Bo-
vine SNP50 BeadChip 87% of these estimates were 
based on a single SNP. The remainder consisted 
of estimates based on 2 to 6 SNPs. Figure 2 shows 
histograms of estimated gene effects and underly-
ing normal densities for the analyzed traits. For 
milk-, fat-, and protein yield the empirical standard 
deviations of gene effects were 0.33, 0.36, and 0.28, 
respectively. Based on t, seven and nine genes were 
identified as significant for milk- and fat yield, 
respectively, all located on BTA14, with the high-
est effects of 7.52 kg of milk and 0.39 kg of fat per 
lactation, both attributed to the DGAT1 gene. All 
genes significant for milk yield were also significant 
for fat yield. For protein yield six significant genes 
were observed, each located on a different chro-
mosome, the most significant was AP1B1 with the 
effect of 0.09 kg of protein per lactation (Table 1).

Gene networks and functional information. Milk 
yield was described by the network of 98 genes, 
representing 1115 various GO terms and 130 vari-
ous KEGG pathways. Assuming the maximum 20% 
type I error rate corrected for multiple testing, 
50 different GO terms and three KEGG pathways G
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were significantly overrepresented in the real data as 
compared to the permuted data sets. The most sig-
nificant among the 50 GO terms with P-values < 10–5 
comprised: the condensin complex (GO:0000796), 
intercellular canaliculus (GO:0046581), and mitotic 
chromosome condensation (GO:0007076). Signifi-
cant KEGG pathways comprised: 
(1)      Arrhythmogenic right ventricular cardiomyo- 

pathy (bta05412; P-value = 0.04464), this path-
way also reached the significance level with 
false discovery rate (FDR) of 0.10972 in GSEA 
as estimated by KOBAS software; 

(2) Dilated cardiomyopathy (bta05414; P-value = 
0.07862), this pathway was not significant in 
GSEA (FDR = 0.16281); 

(3) Tight junction (bta04530; P-value = 0.09542), 
this pathway was the second most significant 
one in GSEA, revealing FDR = 0.06847. 

In total, the three significant pathways consist 
of 224 genes.

For fat yield a gene network consisted of 114 ge- 
nes, which represented 1513 various GO terms 
and 147 KEGG pathways. Fourteen of the GO 
terms were significantly overrepresented in the 
real data network (as compared to the artificial 
networks generated by permutations) and one 
KEGG pathway reached the 10% significance 
level after the correction for multiple testing. 
The most highly significant GO terms (P-value < 
10–5) were represented by the negative regula-
tion of translation involved in gene silencing by 
miRNA (GO:0035278) and cytoplasmic mRNA 
processing body (GO:0000932). The significant 
pathway was RNA degradation (bta03018; P-value 
= 0.04594). This pathway comprises 72 genes and 
was also on the border of significance in GSEA 
with FDR = 0.19183.

The network obtained for protein yield con-
sisted of 44 genes assigned to 660 GO terms 
and 75 KEGG pathways. A total of 28 of the GO 
terms and six KEGG pathways were significantly 
overrepresented in the real data. GO terms with 
P-values < 10–5 comprised: antigen processing and 
presentation of the exogenous peptide antigen 
via major histocompatibility complex (MHC) 
class II (GO:0019886), clathrin adaptor complex 
(GO:0030131), clathrin-coated vesicle mem-
brane (GO:0030665), post-Golgi vesicle-mediated 
transport (GO:0006892), regulation of defense 
response to virus by virus (GO:0050690), and 
trans-Golgi network membrane (GO:0032588). 
Significant KEGG pathways were:
(1) Lysosome (bta04142; P-value < 10–5), this path-

way was also estimated as significant in GSEA 
(FDR = 0.03352);

(2) Cell cycle (bta04110; P-value = 0.00005), the 
pathway was also significant in GSEA (FDR = 
0.00001);

(3) Pentose phosphate pathway (bta00030; P-va- 
lue = 0.00588), this pathway was not significant 
in GSEA;

(4) Endocytosis (bta04144; P-value = 0.00848), 
significant in GSEA with FDR of 0.00265;

Figure 2. Gene effects distributions. Histogram of 
4345 gene effects for milk yield (MKG), fat yield (FKG), 
and protein yield (PKG) with underlying normal density 
with empirical standard deviations (solid line) and stand-
ard normal densities (dashed line)
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(5)  Fructose and mannose metabolism (bta00051; 
P-value = 0.00884); 

(6) Synaptic vesicle cycle (bta04721; P-value = 
0.07768).

Altogether the pathways cover 546 genes.
The summary of KEGG pathways significant 

for the analyzed traits is presented in Table 2 
and the list of significant GO terms is given in 
Supplementary Table S1.

DISCUSSION AND CONCLUSION

Methodologically, some concepts utilized in 
our study have also been recently dealt with by 
other authors. Pathway analysis involving genes 
important in dairy cattle production was a part 
of the study by Cochran et al. (2013). Xiao et al. 
(2014) used the real data set to generate background 
data for hypothesis testing, which is conceptually 
similar to our approach; however, it was based on 
data resampling, not on permutation. In agreement 
with our study, but in the context of gene expres-
sion analysis, Zhe et al. (2013) and Verbanck et al. 
(2013) indicate that the incorporation of pathway 
information, which represents biologically func-
tional groups of genes, improves interpretability 
of results. Regarding the hypothesis testing, the 
concept of gene grouping based on biological 
knowledge, in order to profit from the information 

contained in correlations between genes, was also 
considered by Huang and Lin (2013). The permu-
tation approach applied to gene network analysis 
was also incorporated by Zhou et al. (2013). In that 
case the authors directly permuted interactions 
between genes stored in the Human Interactome 
Resource database.

We are well aware that the obtained gene net-
works and then the resulting final list of genes can 
be influenced by the initial set of information used 
for network construction. The so-called hub genes, 
which reveal many more edges in networks than 
the majority of genes, have a strong influence on 
network physiological interpretation (Zhou et al. 
2013). We used the BisoGenet software (Martin 
et al. 2010), which combines multiple sources of 
biological information for network construction, 
and by performing network validation through per-
mutations. The most severe drawback of our study 
was the poor resolution of the available SNP panel. 
Out of approximately 20 000 genes identified in 
cattle only 6000 are marked by SNPs (Michelizzi et 
al. 2011) on the Illumina BovineSNP50 Genotyping 
BeadChip, but after data editing in our study we 
estimated effects of only 4345 genes. Consequently, 
effects of many genes could not be estimated due 
to a lack of SNPs located in the vicinity of those 
genes and thus could be represented only indirectly 
through network information stored in biological 

Table 2. KEGG pathways significant at a maximum 0.1 level after a multiple testing correction pathways also significant 
in gene set enrichment analysis are marked in bold

KEGG  
symbol KEGG description Count  

original
Count  

permuted
95% CI for 
Odds Ratio P-value

Milk yield
bta05412 arrhythmogenic right ventricular cardiomyopathy 5 259 2.2–11.9 0.04464
bta05414 dilated cardiomyopathy 5 276 2.0–11.2 0.07862
bta04530 tight junction 8 592 1.7–6.9 0.09542
Fat yield
bta03018 RNA degradation 6 48    2.1–10.9 0.04594
Protein yield
bta04142 lysosome 5 64    8.8–51.7 0.00001
bta04110 cell cycle 9 413    3.0–11.4 0.00005
bta00030 pentose phosphate pathway 1 8     7.5–245.4 0.00588
bta04144 endocytosis 8 489 2.2–8.8 0.00848
bta00051 fructose and mannose metabolism 1 9     6.8–216.6 0.00884
bta04721 synaptic vesicle cycle 2 58   2.9–37.5 0.07768

KEGG = Kyoto Encyclopedia of Genes and Genome, CI = confidence intervals

http://www.agriculturejournals.cz/publicFiles/199402.pdf
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databases explored by BisoGenet software. There-
fore, a denser SNP panel is recommended for fu-
ture applications. On the other hand, the Bovine 
SNP50 BeadChip microarray from Illumina is the 
most common platform used for genotyping dairy 
cattle and thus allows for the composition of data 
sets with large numbers of individuals, which is a 
problem for more expensive and less common high 
density microarrays. Furthermore, even though 
LD between SNPs is partially accounted for by 
a simultaneous estimation of all SNP effects in 
one model and by incorporating pairwise r2 into 
the estimator of gene variance, the scaffold gene 
selection may still suffer from a nonzero differ-
ence between true LD and LD accounted for by 
the estimation methodology. One possible way 
to improve the performance of significant SNP/
gene selection could be the incorporation of a 
Bayesian estimation (as discussed by Gianola et 
al. 2009). On the other hand, the practical appli-
cation of such models is much more demanding 
computationally and will make permutation of data 
impossible, especially in the context of dense SNP 
arrays as proposed above. We calculated pairwise 
r2 coefficients between SNPs which mark genes 
significant for fat yield on BTA14 (Figure 3). The 
selected genes generally remain in low LD below 
0.50, except of a cluster DGAT1–PLEC–C8orf33 
with r2 varying between 0.52 and 0.71. 

The approach of screening significant pathways 
for the physiological processes and underlying 

genes needs to be enhanced by the candidate gene 
approach. For example, the gene with a very strong 
effect on milk- and fat yields, DGAT1, was identi-
fied in the original network for the traits, but the 
KEGG pathway, in which DGAT1 participates, was 
not significant as a whole. Another well-known 
cluster of major genes, the casein gene cluster, was 
selected both from original networks and through 
pathways. Several other genes, members of sig-
nificant pathways, were already reported by other 
studies – as indicated in Supplementary Table S2.

Functionally, the associations between individual 
pathways and milk yield traits can be explained 
in many different ways. When analyzing milk 
yield against the Arrhythmogenic right ventricular 
cardiomyopathy pathway (bta05412), the genes 
involved include integrin genes. β1-integrins are 
found on mammary epithelial cells (MEC) (Nemir 
et al. 2000), which play a key role in the mam-
mary gland development and lactation (Naylor 
et al. 2005). This pathway also includes calcium 
channel subunits, which are crucial to calcium 
metabolism and affect milk secretion. The mam-
mary gland can extract large quantities of Ca2+ 
from plasma during lactation, to ensure sufficient 
Ca2+ concentration in milk, and thus supports the 
calcification of teeth and bones in the calf (Horst 
et al. 1997; Shennan and Peaker 2000; Neville 
2005). The link between milk production and the 
Dilated cardiomyopathy pathway (bta05414) might 
have a similar background: the pathway contains 
integrin genes and also genes related to calcium 
metabolism. In the case of the Tight junctions 
(TJs) pathway (bta04530), it is known that TJs 
exist as macromolecular complexes composed of 
several types of membrane proteins, cytoskeletal 
proteins, and signalling molecules. Many of these 
components are regulated during mammary gland 
development and pregnancy cycles (Nguyen and 
Neville 1998). In secretory glandular tissues, such 
as the mammary gland, TJs create the variable bar-
rier regulating paracellular movement of molecules 
through epithelial sheets, thereby maintaining 
tissue homeostasis. Moreover, TJ appears to be 
closely associated with milk secretion. An increase 
in TJ permeability is accompanied by a decrease in 
the milk secretion rate, and conversely, a decrease 
in TJ is accompanied by an increase in the milk 
secretion rate (Nguyen and Neville 1998). Several 
studies have also indicated that the mammary 
alveolar TJs are impermeable during lactation 

Figure 3. Pairwise r2 coefficients between single nucleotide 
polymorphisms (SNPs) representing genes significant for 
fat yield on BTA14
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and therefore allow milk to be secreted from the 
apical membrane without the leakage of milk com-
ponents from the lumen into the blood serum via 
paracellular pathways in goats and cows (Linzell 
and Peaker 1973; Stelwagen et al. 1998a, b). As far 
as fat yield is concerned, it is difficult to indicate 
unequivocally which particular pathway plays a key 
role. The pathway RNA degradation (bta03018) is 
highly unspecific, since RNA degradation might 
regulate the expression of multiple genes involved 
in various physiological mechanisms related to 
fat secretion into the milk. RNA synthesis and 
degradation are key steps in the regulation of gene 
expression in all living organisms, because RNA 
degradation is ubiquitous in all cells.

Protein yield has been found to be associated 
with the Lysosome pathway (bta04142). The lyso-
somal system is involved in numerous physiologi-
cal processes such as degradation of endogenous 
and exogenous macromolecules (proteins, lipids, 
polysaccharides, and nucleic acids), cytoplasmic 
formations (mitochondria, peroxisomes, Golgi 
complex) that have performed their functions, 
tissue regression (post-lactation mammary gland), 
hormone secretion regulation (proinsulin to insu-
lin), etc. The lysosomal system is also involved in 
a number of pathologic processes, such as inflam-
mation, allergic reactions, ischemia, hypoxia, as 
well as lysosomal diseases. During mammary gland 
involution the extracellular matrix and the alveolar 
basement membrane are degraded. The alveoli lose 
their structural integrity and massive death of MEC 
is observed. In bovine mammary glands the loss 
of the MEC population begins after the peak of 
lactation, when the dynamic equilibrium between 
mitosis and apoptosis is shifted towards apoptosis. 
However, the most dynamic induction of MEC 
apoptosis is associated with the beginning of the 
dry period (Wilde et al. 1997, 1999). Apoptosis is a 
physiological mechanism of cell loss that depends 
on both preexisting proteins and de novo protein 
synthesis. The process of apoptosis is integral to 
normal mammary gland development. The link 
between protein yield and the cell cycle pathway 
(bta04110) may result from the function of cyclin 
D1, which is involved both in the normal develop-
ment and malignant transformation of mammary 
epithelium (Sicinski et al. 1995; Neuman et al. 1997). 
The pentose phosphate pathway (bta00030) is yet 
another process related to protein yield. This path-
way is highly active in the cytoplasm of the liver, 

adipose tissue, mammary gland, and the adrenal 
cortex. The pathway includes transketolases (TK), 
which play an important role in the system of sub-
strate rearrangement between pentose shunt and 
glycolysis, permitting the cell to adapt to a variety 
of metabolic conditions (Sax et al. 1996). Its pres-
ence is necessary for the production of NADPH, 
especially in tissues actively engaged in biosyntheses, 
such as mammary glands (Kochetov and Sevostya-
nova 2010). In the case of a link between protein 
yield and the endocytosis pathway (bta04144) it 
is known that endocytic mechanisms serve many 
important cellular functions, including the uptake 
of extracellular nutrients, regulation of cell-surface 
receptor expression, maintenance of cell polarity, 
and antigen presentation (Mukherjee et al. 1997; 
Clague 1998). This pathway includes genes known 
to be associated with milk production traits in dairy 
cows, such as members of the growth factor family 
(TGF, EGF, IGF) and their receptors. The presence 
of mRNA for EGF, TGF-α, and AR suggests that 
these growth factors may be important in mammo-
genesis in pubertal heifers and during pregnancy, 
especially during proliferation and differentiation 
of the MEC. A role of IGF-I in mammary duct 
development has been postulated based on several 
observations, as IGF-I can stimulate the prolifera-
tion of MEC in organ culture at low concentrations 
(Richert and Wood 1999). Moreover, IGF-I, IGF-II,  
and the IGF-IR are expressed within both the epi-
thelial and stromal compartments of the virgin 
mammary gland (Richert and Wood 1999; Berry 
et al. 2001). The endocytosis pathway also includes 
the cytokine and chemokine receptor genes (CCR, 
CXCR, TRAF, IL2R) related to innate and adaptive 
immunity, as well as the major histocompatibility 
complex BoLA class I (Behl et al. 2012). The role 
of the fructose and mannose metabolism pathway 
(bta00051) in protein yield may be related to the fact 
that carbohydrates are the most important source 
of energy. In addition to the FBP2 identified as a 
scaffold gene in our study, the link with bta00051 
can result from the function of hexokinases (HK2), 
which are a key control point in glycolysis and are 
expressed throughout mammary gland development. 
HK2 has a specific role in the mammary gland as 
a consequence of the increased energy production 
associated with lactation (Kaselonis et al. 1999).

Based on 4345 genes, through the validated 
KEGG pathway selection, we identified sets of genes 
functionally involved in milk yield (224 genes), 
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fat yield (72 genes), and protein yield (546 genes) 
(Supplementary Table S2).

Just a few of the loci represented genes with 
high effects already reported by previous studies, 
such as e.g. 13, 4, and 27 of genes listed in the 
review by Ogorevc et al. (2009). Moreover, for 
milk and fat yields none of the scaffold genes were 
represented in the set and out of the six scaffold 
genes for protein yield only two (AP1B1, FBP2) 
were present in the set. Those findings illustrate 
the key difference between a traditional GWAS 
approach, which is focused on genes with high ef-
fects on phenotypic variation, and our approach, 
which aims to discover genes with medium and 
small effects on trait variation.

The incorporation of data available for other 
species, for which more functional information on 
genes has been encoded, through gene networks and 
the following identification of significant pathways 
and GO terms is a promising way to diminish the 
fraction of missing heritability of complex phe-
notypes measured in dairy cattle. However, even 
though large phenotyped cohorts of animals are 
easy to obtain for the Holstein-Friesian breed, the 
bottleneck is the availability of dense marker maps 
from the genetic perspective and network valida-
tion from the statistical perspective. The former is 
soon going to be resolved thanks to ongoing whole 
genome sequencing and imputation projects carried 
out in cattle, the latter can be done using empirical 
methods provided sufficient computational power 
is available. Another critical aspect of gene network 
based studies using human homologues of cattle 
genes is that the functional information for humans 
has been encoded with more focus on human related 
phenotypes and may lack some of the information 
related to traits of interest for dairy cattle. Thanks 
to the current Functional Annotation of Animal 
Genomes (FAANG) initiative towards functional 
annotation of animal genomes focusing on livestock, 
this problem can be overcome in the future.
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