Ovarian follicle growth dynamics during the postpartum period in Holstein cows and effects of contemporary cyst occurrence

R. Rajmon¹, J. Šichtař¹, L. Vostrý², D. Řehák³

ABSTRACT: The indicators of follicle development with regard to the growth wave order, the first ovulation, animal parity, and also with regard to the simultaneous presence or absence of a follicular cyst were determined in cows in the course of 60 days postpartum. Follicular dynamics were monitored daily by ultrasonography. The animals were assigned to three groups based on the time of the 1^{st} ovulation: G1 (n = 9) - the 1st dominant follicle (DF) ovulated, G2 (n = 10) - ovulation occurred on the 2nd or later follicular waves, and G3 (n = 5) – no ovulation occurred during the experimental period. G1 animals showed better fertility later (no cyst, less days open, P = 0.07, less hormonal treatment, P = 0.008). The rhythm of follicular wave development was generally similar in all the animals (based on emergence of the first follicular wave, the interval from emergence to deviation, and the number of all follicular waves). Nevertheless, emergence of follicular waves and deviation occurred by 0.5-0.9 day earlier in primiparous than in multiparous cows and in G1 vs. G2, or G3, respectively (in all P < 0.05). DF development was independent of parity as well as group effects, but the maximum size and growth rate (1.2 vs. 0.8 cm/day, P < 0.05) were higher in ovulatory follicles (OF) than in regressive ones (rDF). The presence of a growing cyst decreased the probability of rDF as well as OF development (P < 0.0001). The OF growth rate was faster in the milieu of a stagnating cyst than without any cyst (P < 0.04). Therefore, the development of follicles was dramatically suppressed beyond, but nor before, deviation in the milieu of a growing cyst. Cessation of the cyst growth accelerated the development of OFs. On the contrary, a cystic structure without any significant growth can persist for weeks with no effect on successful follicular development.

Keywords: cow; postpartum; ovary; follicular wave; dominant follicle; cyst

Ovarian activity plays an irreplaceable role in the chain of events leading to pregnancy and delivery. Early resumption of ovarian activity is essential for timed cow conception, and thus for achieving an economically acceptable length of the open period. Crucial events in the resumption of ovarian activity postpartum (pp) are the emergence of the 1st follicular wave (Lucy, 2007) and selection of the dominant follicle (DF) (Mihm and Austin, 2002), which can ovulate, become atretic, or develop into a cyst

or non-ovulatory follicle (Savio et al., 1990a; Beam and Butler, 1997; Sakaguchi et al., 2006). Factors affecting the fate of DFs pp are closely related to the metabolic status of animals – for instance, prepartum diet (Cavestany et al., 2009), energy balance (EB) pp (Beam and Butler, 1997), but also parity (Zhang et al., 2010). The ovarian follicular dynamics in heifers and cows is well described during the oestrous cycle (Sartori et al., 2004; Šichtař et al., 2010), but there is a lack of detailed information

Supported by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. QH91270 and S grant).

¹Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

²Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic

³Institute of Animal Science, Prague-Uhříněves, Czech Republic

about follicular development in the early pp period, especially in high-yielding dairy cows.

In the context of the onset of ovarian activity pp, authors have focused mainly on indicators such as dynamics and metabolic/hormonal profiles of the first follicular wave (Kawashima et al., 2007), days of the first ovulation (Galvao et al., 2010), the first onset of luteal activity (Hayashi et al., 2008), links to uterine involution (Sheldon and Dobson, 2004) or to the first insemination term (Hommeida et al., 2005). It has been determined that the first follicular growth wave emerges soon after delivery and is independent of the EB of the animal (Butler, 2003). Selection of its DF (> 9 mm) takes place around day 10 pp (Savio et al., 1990a). DFs from the first follicular growth wave ovulate in 30-80% by day 20 (Crowe, 2008), and the interval from parturition to the first ovulation seems to be dependent on parity (Darwash et al., 1997; Tanaka et al., 2008). In the case of successful ovulation, corpus luteum (CL) forms and subsequent luteolysis can result in reestablishment of cyclical ovarian activity (Peter et al., 2009). There is good evidence that the 1st luteal phase pp is not regular (Opsomer et al., 1998). The question arises if the subsequent follicular growth is also affected.

Information dealing with the growth dynamics characteristics of follicles on the 2nd and further follicular waves is rare and historical (Savio et al., 1990a; Kamimura et al., 1993a). Since the time of these experiments, namely the milk yield and thus metabolic status of dairy cows as well as their reproductive performance have changed. Therefore, such information in high-yielding dairy cows is needed (Sakaguchi, 2011).

Besides resumption of follicular growth, the pp period is also often characterized by cyst development (Sakaguchi et al., 2006). In early pp, 6-30% of lactating cows develop cystic follicular structures (Opsomer et al., 1996; Garverick, 1997) which can affect their subsequent fertility (Braw-Tal et al., 2009). There are many studies dealing with growth and endocrine characteristics of these structures (e.g. Hamilton et al., 1995; Hooijer et al., 2001). It is obvious that cysts are dynamic structures, as well as that follicular turnover may also happen when a cyst is present on an ovary. Also, it has been known for decades that the ovulation rate is reduced in the presence of a cyst (Aldahash and David, 1977). But to the best of our knowledge, there is no information on the growth characteristics of non-cystic follicular structures in the presence of a cyst on the ovary.

The objective of this study was to determine the indicators of follicular wave and dominant follicle developments in pp high-yielding cows during the first 60 days after parturition, and to evaluate particular follicle growth characteristics in respect to the growth wave order, the term of the first ovulation, animal parity, subsequent fertility, and also with regard to the contemporary presence or absence of a follicular cystic structure on the ovary.

MATERIAL AND METHODS

Animals

The experiment was carried out at the experimental farm of the Institute of Animal Science in Prague-Uhříněves, in accordance with the Breeding Preservation and Animal Experimentation Act No. 207/2004 Sb. The data presented in this study were collected from 24 lactating (7 primiparous and 17 multiparous) high-yielding Holstein cows with an assumed milk yield of 11 000 kg per lactation. Throughout the experiment the animals were kept in the same free stall barn, fed with the same Total Mixed Ration (TMR) balanced to their lactation status, and milked twice a day. The calving in experimental cows was assisted with gentle traction but no dystocia were recorded and there were no cases of abnormal uterine involution. The fertility of cows was evaluated on the basis of days open (DO; from parturition to successful insemination) and the frequency of hormonal treatment after the voluntary waiting period completion.

Ultrasound examinations

The reproductive organs of the cows were monitored daily from day 4–6 till day 60 pp. Ovarian and uterine structures were scanned with a real-time B-mode linear array scanner equipped with a 7.5 MHz linear rectal probe MyLabTM30Vet (Esaote, Maastricht, the Netherlands). The ultrasonic images were recorded on the scanner's hard disc, and the indicators described below were later analyzed using MyLabTMDesk software developed directly for the MyLabTM30Vet scanner. All ultrasonographic examinations were performed by one person after the afternoon milking. The follicular diameters presented in this paper represent the size of the antrum.

Ovarian follicular growth characteristics

Only follicles greater than 4 mm in diameter were recorded. The waves of follicular growth were retrospectively identified from the processed ultrasonographic digital video records. All follicles of at least 9 mm in diameter were defined as the dominant follicles (DFs) continuing in growth and exceeding the diameter of all other follicles in the wave. Regressive DFs (rDFs) are those which end their lifespan with regression (DF without ovulatory and cystic follicles). Ovulatory follicles (OFs) are the dominant follicles, ending their lifespan with ovulation. Assessment of DFs' characteristics proceeded disregarding estrous cycle occurrence. Follicular wave emergence (in days pp) was determined for each individual wave and was characterized by the appearance of follicles > 4 mm. The process of DF deviation was characterized in accordance with the terms used by Ginther et al. (2003). The growth and regression periods represent the number of days during which the follicle developed from 9 mm to maximum size and subsequently diminished from maximum size to 9 mm. Growth and regression rates of DF (in mm/day) were calculated by subtracting its minimum diameter (9 mm) from its maximum one and dividing by the length of its growth or regression period (Figueiredo et al., 1997). The lifespan of DF represents the number of days which the follicle spent above the 9-mm limit. The characteristics of DFs' development used in this manuscript is depicted in Figure 1. The emergence—deviation interval indicates the number of days from wave emergence to DF deviation. The interovulatory interval (IOI) determines the number of days between 2 consecutive ovulations. The cystic follicle was defined as an ovarian structure with a diameter of at least 18 mm developing to its maximum size in the absence of CL and being present on an ovary for at least 20 days.

Statistical analyses

In order to verify their distribution normality, the data for all analyses were examined using the Shapiro-Wilk test (Statistical Analysis System, Version 9.1.3., 2005). The data on follicular growth dynamics were analyzed by the least-square means analysis using the GLIMMIX Procedure of SAS (Statistical Analysis System, Version 9.1.3., 2005) for the main effects of parity (primiparous, multiparous) and group (G1, G2, G3), or using repeated statements for the purpose of repeated measurements respecting (Rasch and Masata, 2006). The differences among the least square means were tested at the significance level (error probability) of P < 0.05. Due to the fact that the levels of indicators' "emergence" and "deviation" depend on the order of the particular follicular wave, these traits were transformed to a standard variable with normal

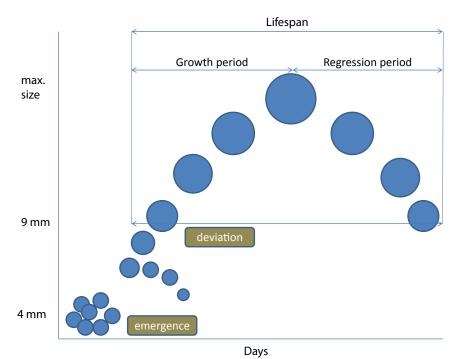


Figure 1. Schematic follicular growth characteristics

distribution and with the mean equal to 0 and the standard deviation equal to 1 - N(0, 1). The data are presented as least-square means and standard error (LSM \pm SE).

RESULTS AND DISCUSSION

The 1st follicular wave emerged 6.6 ± 4.4 days pp in all animals. This event happened earlier in primiparous than in multiparous cows (4.7 \pm 1.1 and 7.4 ± 5.0 days pp, P = 0.09, respectively). This trend toward earlier emergence in primiparous cows is interesting mainly with regard to a similar difference in emergence demonstrated among all

the follicular waves monitored. The interval from emergence to deviation of the 1^{st} DF was approximately 4 days (Table 1). These results are generally in accordance with the reported emergence of the 1^{st} follicular wave pp in dairy and beef cows in days 5–10 (Savio et al., 1990a; Crowe, 2008).

Among all the 1st DFs (n = 24), 9 of them (37.5%) became atretic, 6 (25%) developed into a cyst, and 9 (37.5%) ovulated. The first DF ovulated in 4 out of 7 primiparous and in 5 out of 17 multiparous cows (P = 0.22). Ovulation of the 1st DF in 14/19, 23/50, and 6/16 Holstein cows, independently of parity, was reported by Savio et al. (1990a), Sakaguchi et al. (2004), and Kawashima et al. (2006), respectively. From the published results, it is obvious that this

Table 1. Characteristics of follicular growth wave development in five consecutive waves postpartum with regard to cow parity (primiparous/multiparous) and the time of the 1st ovulation (G1: the 1st DF ovulated, G2: ovulation occurred on the 2nd or later follicular waves, G3: no ovulation occurred during experimental period)

Parameter	п	Primiparous	Multiparous	<i>P</i> -value	п	G1	G2	G3	<i>P</i> -value
W1, emergence– deviation (days)	24	4.3 ± 0.5	5.1 ± 0.3	0.19	24	4.7 ± 0.4	4.7 ± 0.4	5.4 ± 0.6	0.54
W2, emergence– deviation (days)	24	4.2 ± 0.2	4.1 ± 0.4	0.94	24	4.4 ± 0.3	4.0 ± 0.3	4.0 ± 0.4	0.56
W3, emergence– deviation (days)	24	4.4 ± 0.4	4.2 ± 0.2	0.65	24	4.0 ± 0.3	4.7 ± 0.3	3.8 ± 0.4	0.08
W4, emergence– deviation (days)	19	4.0 ± 0.4	4.5 ± 0.3	0.30	19	4.4 ± 0.3	3.9 ± 0.3	5.3 ± 0.5	0.08
W5, emergence– deviation (days)	19	4.0 ± 0.5	4.3 ± 0.3	0.61	19	3.8 ± 0.5	4.4 ± 0.4	4.3 ± 0.7	0.64
Days from emergence to deviation, overall	124	4.1 ± 0.2	4.4 ± 0.1	0.27	124	4.3 ± 0.2	4.3 ± 0.2	4.4 ± 0.2	0.85
W1, No. of follicles	24	3.7 ± 0.7	4.4 ± 0.4	0.43	24	4.2 ± 0.6	4.0 ± 0.8	4.4 ± 0.8	0.91
W2, No. of follicles	24	3.9 ± 0.6	3.7 ± 0.4	0.84	24	3.6 ± 0.5	4.1 ± 0.5	3.4 ± 0.7	0.67
W3, No. of follicles	24	4.3 ± 0.7	4.1 ± 0.4	0.83	24	3.3 ± 0.5	4.2 ± 0.5	5.6 ± 0.7	0.06
W4, No. of follicles	18	4.3 ± 0.7	3.5 ± 0.6	0.42	18	3.7 ± 0.6	3.1 ± 0.6	6.0 ± 0.9	0.06
W5, No. of follicles	15	4.5 ± 0.9	4.1 ± 0.6	0.73	15	3.8 ± 0.9	4.3 ± 0.7	5.0 ± 1.0	0.82
Number of DFs	127	5.4 ± 0.3	4.8 ± 0.2	0.22	127	5.4 ± 0.2	4.9 ± 0.2	5.2 ± 0.3	0.82
Deviation of 1 st DF (days pp)	17	8.0 ± 4.0	15 ± 3.0	0.23	22	8.0 ± 3.0	16 ± 5.0	17 ± 5.0	0.16
Deviation of 2 nd DF (days pp)	22	19 ± 3.0	23 ± 2.0	0.36	22	18 ± 3.0	23 ± 3.0	27 ± 4.0	0.15
Deviation of 3 rd DF (days pp)	23	27 ± 4.0	34 ± 3.0	0.19	18	28 ± 3.0	34 ± 3.0	37 ± 5.0	0.26
Deviation of 4 th DF (days pp)	16	36 ± 4.0	40 ± 3.0	0.39	17	36 ± 4.0	40 ± 4.0	40 ± 7.0	0.80
Deviation of 5 th DF (days pp)	15	43 ± 5.0	46 ± 3.0	0.56	15	42 ± 4.0	47 ± 4.0	41 ± 7.0	0.57

DF = dominant follicle, W = wave, pp = postpartum

indicator varies very widely (38–73%). Our observations are similar to those of Kawashima et al. (2006).

Based on the time of the 1st ovulation, the animals were subsequently assigned to 3 groups: group 1 (G1) – the 1st DF ovulated (n = 9), group 2 (G2) ovulation occurred on the 2nd or later follicular waves (n = 10), and group 3 (G3) – no ovulation occurred during the experimental period (n = 5). Therefore, all the 1st ovulations came from the 1st follicular wave in G1. Representation of parities in G1, G2, and G3 was 4/5, 3/7, and 0/5 for primiparous/ multiparous cows (P = 0.22). The 1st ovulation pp occurred on pp day 15 ± 4 in G1 and 38 ± 7 in G2 (P < 0.01). Cows in the G1 group did not develop any cyst, while in the G2 and G3 animals, cysts developed from the 1st DF as well as from the other DFs. In G2, the formation of cysts from the 1st DF delayed the first ovulation in 5 animals. All the animals which ovulated early pp (G1) did not even show any ovarian pathologies further in lactation. Kamimura et al. (1993a) and Kawashima et al. (2006) reported the first ovulation on day 17 ± 1 or 36 ± 4 and 17 ± 4 or 36 ± 6 pp for cows ovulating the 1st DF or the 2nd and later DFs, respectively. The difference in terms of the first ovulation between parities (primiparous 15 ± 5 , multiparous 24 ± 4 days pp) was not proven to be significant (P = 0.15). Nevertheless, the trend is similar to the other indicators monitored. The mean length of IOIs (n = 11) after the 1st ovulation was 20 ± 6 days (ranging from 9 to 35 days), which is in agreement with other studies (Savio et al., 1990b; Kamimura et al., 1993b).

Based on the ultrasonographic examinations during 60 days pp, the emergence of the individual follicular waves (n = 111) occurred earlier in primiparous than in multiparous cows (a difference of 0.6 day, P = 0.0047). When the group classification was taken into account, the follicular waves (n = 111) emerged by 0.8 and 0.9 days earlier in the G1 cows than in those from the G2 or G3 groups, respectively (P = 0.0003, see Figure 2). Similarly, the process of DF (n = 93) deviation, i.e. the point when a follicle reached 9 mm in diameter, was detected by 0.5 days earlier in primiparous than in multiparous cows (P = 0.04), and DFs in the G2 and G3 cows deviated by 0.5 and 0.7 days later compared to DFs in the G1 cows (P = 0.02).

In accordance with these differences, it appears that the trend toward earlier and successful development of the 1st follicular wave in primiparous cows was subsequently projected to earlier timing of further follicular wave developments. We can see a similar trend among groups (divided according to the time of the 1st ovulation pp), when the G1 animals resumed follicular growth earlier than those in the G2 and G3 groups, and this shift is later distinct in lactation, i.e. the 1st ovulation, emergence of later waves, etc. (Table 2). Galvao et al. (2010) published a study on the positive role of the earlier 1st ovulation on subsequent fertility, which was also found in our experiment. Animals ovulating follicles from the 1st follicular wave (G1 group) got pregnant earlier (mean DO for G1, G2, and G3 were 84, 113, and 164 days, respectively; P = 0.07) and after a voluntary waiting period they were not

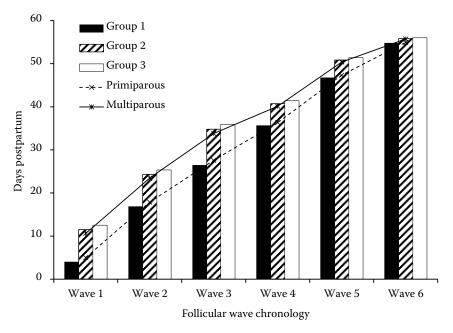


Figure 2. Follicular growth wave emergence during six waves postpartum with regard to cow parity (primiparous/multiparous) and the time of the 1st ovulation (G1: the 1st dominant follicle ovulated, G2: ovulation occurred on the 2nd or later follicular waves, G3: no ovulation occurred during experimental period)

Table 2. Growth characteristics of dominant follicles with regard to cow parity (primiparous/multiparous) and the time of the 1^{st} ovulation (G1: the 1^{st} DF ovulated, G2: ovulation occurred on the 2^{nd} or later follicular waves, G3: no ovulation occurred during experimental period)

Parameter	п	Primiparous	Multiparous	<i>P</i> -value	п	G1	G2	G3	<i>P</i> -value
1 st ovulation (days pp)	19	15.00 ± 5.00	24.00 ± 4.00	0.15	19	15.00 ± 4.00	38.00 ± 7.00		< 0.01
Maximal size of rDF (cm)	61	1.43 ± 0.06^{a}	1.46 ± 0.03^{a}	0.36	61	1.45 ± 0.05^{a}	1.40 ± 0.04^{a}	1.37 ± 0.06	0.68
Maximal size of OF (cm)	37	1.61 ± 0.07^{a}	1.60 ± 0.06^{a}	0.96	37	1.64 ± 0.06^{a}	1.55 ± 0.07^{a}		0.35
Lifespan of rDF (days)*	55	13.00 ± 1.00	14.5 ± 0.40	0.39	55	14.00 ± 1.00	15.00 ± 1.00	14.00 ± 2.00	0.80
Growth period of rDF (days)**	60	6.60 ± 0.90	7.30 ± 0.50	0.52	60	7.40 ± 0.80	7.00 ± 0.70	7.10 ± 0.90	0.94
Growth period of OF (days)**	37	6.50 ± 0.60	6.60 ± 0.50	0.94	37	6.90 ± 0.60	6.20 ± 0.70		0.48
Regression period of rDF (days)	55	5.80 ± 0.80	6.60 ± 0.50	0.37	55	5.70 ± 0.70	6.60 ± 0.60	6.80 ± 0.80	0.37
Growth rate of rDF (cm/day)	60	0.07 ± 0.02^{b}	0.09 ± 0.01^{b}	0.27	60	$0.09 \pm 0.01^{\rm b}$	0.09 ± 0.01^{b}	0.08 ± 0.02	0.85
Growth rate of OF (cm/day)	37	0.12 ± 0.01^{b}	0.13 ± 0.01^{b}	0.86	37	0.12 ± 0.01^{b}	0.13 ± 0.01^{b}		0.57
Regression rate of rDF (cm/day)	55	0.07 ± 0.20	0.09 ± 0.10	0.64	55	0.08 ± 0.20	0.07 ± 0.10	0.10 ± 0.20	0.67

rDF = regressive dominant follicle, OF = ovulatory dominant follicle, pp = postpartum

hormonally treated as often as cows ovulating later pp (frequency of hormonal treatment was 1, 8, and 5 animals for G1, G2, and G3, respectively; P =0.008). Data in the literature more often describe earlier resumption of follicular growth in multiparous cows (Tanaka et al., 2008; Zhang et al., 2010). Less favourable metabolism and health status after the first delivery in primiparous cows together with synchronous progressive growth and ongoing lactation are often pointed to (Wathes et al., 2007a). Nevertheless, there are also studies where a difference dependent on parity was not found (Zain et al., 1995; Wathes et al., 2007b), as well as those which came to the opposite conclusion as we did (Kawashima et al., 2006). Therefore, this confrontation of primiparous and multiparous animals is evidently specific for individual herds. We assume that in fact the onset of follicular development is influenced rather by the ability to balance energy or stress pp under given conditions than by the parity.

Similarly, the number of follicular waves (represented by the number of developed DFs) in the

entire experimental period (60 days) did not differ among parities (5.4 \pm 0.3 for primiparous and 4.8 \pm 0.2 for multiparous cows), nor were they related to the time of the first ovulation pp (Table 1). Also, the interval from emergence to deviation was not influenced by the parity or time of the 1st ovulation (Table 1). Its range (approximately 4 days) is in agreement with Ginther et al. (1997). Mean numbers of follicles > 4 mm (Table 1) in individual follicular waves varied from 3.1 to 6.0, but no influence of parity or group was demonstrated. This was mainly because of high variability among cows and also among consecutive follicular waves in individual animals. Burns et al. (2005) also stated high variability among individual animals. According to them, variance in the number of follicles developed during the estrous cycle could have an important but little understood role in fertility regulation in single-ovulating species, such as cattle. Interestingly, we found the most distinct differences in the emergence-deviation interval between waves 3 and 4, where the difference in the number

^{*}interval when the rDF size was over the 0.9 cm limit

^{**}from deviation (0.9 cm) to maximal size (rDF) or ovulation (OF)

 $^{^{}a,b}$ data in the column signed with the same superscripts differ significantly at P < 0.05

of follicles also approached the level of statistical significance.

Nevertheless, it is obvious that taking into account all the above-mentioned data, the rhythm of follicular wave development was generally similar in all the animals. Therefore, in accordance with the opinion of Velazquez et al. (2008), it is obvious that prolongation of the non-ovulatory period pp is not a result of DF absence.

The indicators of follicular development after DF deviation - the mean maximum diameters of regressive DFs (rDFs) or ovulatory follicles (OFs) and the lengths of rDF or OF growth periods are presented in Table 2. No differences were found among parities or the G1, G2, and G3 groups (the 1st ovulation until day 20 pp, in the range of 20–60 days, or later than in 60 days, respectively). Nevertheless, the rDFs were smaller than the OFs (approximately 1.4 vs. 1.6 cm, P < 0.01), similar to the data presented by Savio et al. (1990b) or Sartori et al. (2004), and the growth rate was faster in OFs than in rDFs (P < 0.05). The differences in maximum size and growth rate between rDFs and OFs (both P < 0.05) were also evident in the milieu with a follicular cyst (Table 3). Interestingly, the length of the growth period did not reflect the size and growth rate differences – rDFs 7.1 ± 0.8, OFs 6.5 ± 0.6 days (P = 0.43). These values are in accordance with the data of Sirois and Fortune (1988), Savio et al. (1988), and Ginther et al. (1989), but all these results were obtained in heifers not influenced by lactation and, on the contrary, the data on lactating cows by Savio et al. (1990b) indicated rather by 2 days shorter growth periods. Nevertheless, the reason for such a difference is more probably in the methodology of ultrasound examination, as Savio et al. (1990b) reported follicular wave emergence on days 2-6 after ovulation. This is not in agreement with repeatedly observed first wave emergence on the 1st-2nd days after ovulation (Ginther et al., 1989; Šichtař et al., 2010). Also, Savio et al. (1990b) found the lifespan of rDFs to be evidently shorter than we did (Table 2), although they monitored the follicles until their disappearance, whereas we stopped their monitoring when their size dropped back to 9 mm. Therefore, we assume in fact the pattern of rDF/OF growth is probably similar in cows and heifers. On the other hand, we did not mention any larger variability in OF growth addressing the differences regularly observed in 2-wave or 3-wave cycles (generally 9–10 days vs. 5–7 days; Šichtař et al., 2010). We believe that this is due to the fact that most OF monitored in our experiment grew without the influence of CL, therefore independently of wave patterns or estrous cycle stages. This points out the role of CL in follicular growth modulation, in its shortening and lengthening, as mentioned by Wilson et al. (1998).

Similarly to previous indicators of rDF/OF growth, their growth rates were not influenced by parity or group (Table 2). Our values, especially for rDFs, are lower compared to those of many other studies. Interestingly, except for an article by Gaur and Purohit (2007), these papers were published about

Table 3. Growth characteristics of ovulatory follicles (OFs) and regressive dominant follicles (rDFs) with regard to a cyst occurrence on the ovary during their lifespan

Parameter	OF					rDF				
	п	presence of cyst	absence of cyst	<i>P</i> -value	п	presence of cyst	absence of cyst	<i>P</i> -value		
Predisposition of ovulation occurrence in a group*	37	2.00 ± 0.10	1.20 ± 0.10	< 0.01	71	2.27 ± 0.16	1.88 ± 0.11	0.29		
Deviation (days)**	33	0.49 ± 0.29	-0.18 ± 0.17	0.06	58	0.62 ± 0.22	-0.23 ± 0.14	0.19		
Maximum size (cm)	37	$1.60 \pm 0.05^{a,d}$	$1.60 \pm 0.09^{b,c}$	0.95	61	$1.40 \pm 0.03^{a,c}$	$1.40 \pm 0.05^{b,d}$	0.64		
Growth (days)	37	6.80 ± 0.60	6.00 ± 0.85	0.44	60	7.43 ± 0.54	6.31 ± 0.89	0.48		
Growth rate (cm/day)	37	$0.15 \pm 0.01^{e,f,h}$	$0.11 \pm 0.01^{e,g}$	0.04	60	$0.08 \pm 0.01^{f,g}$	0.09 ± 0.02^{h}	0.82		
Regression (days)					54	6.20 ± 0.50	6.20 ± 0.90	0.92		
Regression (cm/day)					54	0.09 ± 0.01	0.05 ± 0.03	0.21		

^{*}OFs were evaluated in groups 1 and 2 only

^{**}standard variables with normal distribution, where given values represent deviation from 0

 $^{^{}m a-h}$ data in the row signed with the same superscript differ significantly at P < 0.05

20 years ago (e.g. Savio et al., 1988) and usually demonstrated surprisingly late emergence especially of the 1st follicular growth waves and a short period of follicular growth. More recent papers deal with data much more similar to ours, but unfortunately they focus on OFs only (e.g. Carvalho et al., 2008; Morris et al., 2009). The growth rate of OFs was significantly higher than that of rDFs in our animals (P < 0.05), consistently among primiparous as well as multiparous, G1 or G2 animals (Table 2). This is in accordance with data by Murphy et al. (1990) and Adams et al. (2008). Nevertheless, many other studies did not demonstrate such a difference (Savio et al., 1990b) or found an opposite relationship (Savio et al., 1988; Ginther et al., 1989). Whether the different methodological approach mentioned above, genetic selection progress made in the past 20 years, together with negative trends in reproductive efficiency and ovarian activity (e.g. Garmo et al., 2009; Kafi and Mirzaei, 2010), or simply physiological variation is responsible for these result variabilities - all this is questionable.

The parity and also the time of the $1^{\rm st}$ ovulation have no influence on the lifespan and regression of DFs (Table 2). Savio et al. (1988) and Murphy et al. (1990) reported an equal number of days when the rDF was detected during the $1^{\rm st}$ or the $1^{\rm st}$ and $2^{\rm nd}$ follicular waves in 2- or 3-wave cycles, respectively. Nevertheless, the indicator of lifespan was defined differently. It is interesting that regression was approximately one day faster in animals with the $1^{\rm st}$ ovulation up to 20 days pp than in animals ovulating the $1^{\rm st}$ follicle > 60 days pp.

Cysts

Among all the animals (n = 24), 42% of them (n = 10) developed a cyst during the monitored period. Moreover, two of the cows developed an additional cyst. Such incidence corresponds to the data of similarly based studies (44%, Hamilton et al., 1995; 27%, Vanholder et al., 2005; 71%, Sakaguchi et al., 2006). Also, the repeated presence of cysts is a well-known phenomenon (Hamilton et al., 1995; Kengaku et al., 2007). In six cases, the cyst developed as early as the 1st follicular wave and persisted until the monitoring ended (day 60 pp). Although such occurrence of cysts developing from the 1st detected DF is not surprising, as Savio et al. (1990a) found the same ratio (21%), their long persistence is interesting namely in terms of rou-

tine ovary function examination at the end of the voluntary waiting period.

All together 108 follicles (rDFs + OFs) were monitored. 15 out of 71 rDFs and 12 out of 37 OFs developed when a cyst was present on the ovary. Such a rate is significantly (P < 0.0001) lower in both follicle types than one would expect on the basis of time periods when the follicles could develop in the presence or absence of a cyst (Table 3). Significantly fewer rDFs or OFs developed when a growing cyst was present than in the absence of a cyst (P < 0.0001), but also, than in the presence of a stagnating cyst (P < 0.0006). If a stagnating cyst was present on an ovary, the incidence of OFs was comparable to the situation where cysts were absent; however, non-ovulating rDFs appeared less frequently (P < 0.004). The shift in the rDF/OF ratio in such a milieu is also highly significant (P < 0.0001).

Follicle development in the presence of a cyst was presumed on the basis of CL presence in a study by Aldahash and David (1977). It is interesting that many articles discuss the characteristics of cyst development (e.g. Sakaguchi et al., 2006), but the development of follicles under cystic conditions is not mentioned. The graphic schemes in Sakaguchi et al. (2006) clearly indicate that follicles are able to grow in the presence of cysts. Unfortunately, the authors did not monitor the follicular growth/ developmental characteristics. Hence, there is still a lack of information in this area (Sakaguchi, 2011). According to our data, it seems that follicular growth restraint in the presence of a growing cyst was blocked out almost immediately after cessation of the cyst growth. This could be a consequence of steroidogenic cyst activity typical for the period of the cyst growth (Noble et al., 2000; Silvia et al., 2002). Moreover, follicular development after cyst growth cessation seems to be somewhat stimulated, as the following follicular growth wave generated the OF in all cases (7 animals) except for 3 animals which were not able to ovulate during the entire 60-day monitored period. Even though Sakaguchi et al. (2006) did not emphasize this result, it is obvious from their graphs that they found a similar pattern in 4 out of 5 animals, as well.

This hypothesis of an accelerated follicular development is also supported by analysis of follicular growth characteristics in relation to the presence or absence of a cyst (Table 3). Although the rDFs were not influenced by these aspects, the OFs' growth rates (cm/day) were faster in the presence of a cyst (P = 0.04).

Although Table 3 indicates some tendency to a later deviation of OFs in the presence of a cyst, analysis of the effect on the individual animals revealed that the deviation is in fact dependent on the differences in follicular wave timing between animals with or without any cyst occurrence during the entire pp period (with cysts 0.6 day later, P = 0.005).

CONCLUSION

Based on the indicators of the 1st follicular wave development such as its emergence, fate of the 1st DF, time of the 1st ovulation, or the 1st IOI length, the animals in our experiment reached average reproductive efficiency.

The rhythm of follicular waves was quite uniform up to DF deviation, regardless of whether or not they reached ovulation (except in cows with cysts). Small differences were notable in their timing only (earlier in primipara or G1, later in cows developing a cyst). Therefore, prolongation of the non-ovulatory period pp in individual animals was not a result of DF absence.

Although some indicators were found to be significantly better in primipara, in the light of published data we assume that this effect is specific rather for the herd and the commencement of follicular development is influenced rather by the ability to balance energy or stress pp under given conditions than by the parity.

The earlier 1st ovulation was connected with earlier timing of follicular wave growth but, especially, the final cow reproductive performance was related to the fate of the 1st DF – animals ovulating early (i.e. within 20 days) pp showed significantly better fertility than those ovulating later in lactation (earlier pregnancy and less hormonal treatment).

After dominant follicle deviation, the indicators of follicular development (e.g. growth rate) differed in depending on follicle type (rDF vs. OF). Therefore, in interpreting results from other studies, it is necessary to distinguish which follicle type they are focusing on.

Development of follicles was dramatically suppressed beyond, but not before, deviation in the milieu of a growing cyst. Meanwhile, cessation of cyst growth accelerated the development of OF. On the contrary, a cystic structure without any significant growth can persist for weeks with no effect on follicular development.

Acknowledgement

We thank Mrs. Lois Russel for her editorial assistance with this manuscript and Mr. Radek Tolman for animal handling.

REFERENCES

Adams G.P., Jaiswal R., Singh J., Malhi P. (2008): Progress in understanding ovarian follicular dynamics in cattle. Theriogenology, 69, 72–80.

Aldahash S.Y.A., David J.S.E. (1977): Anatomical features of cystic ovaries in cattle found during an abattoir survey. Veterinary Record, 101, 320–324.

Beam S.W., Butler W.R. (1997): Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biology of Reproduction, 56, 133–142.

Braw-Tal R., Pen S., Roth Z. (2009): Ovarian cysts in high-yielding dairy cows. Theriogenology, 72, 690–698.

Burns D.S., Jimenez-Krassel F., Ireland J.L.H., Knight P.G., Ireland J.J. (2005): Numbers of antral follicles during follicular waves in cattle: evidence for high variation among animals, very high repeatability in individuals, and an inverse association with serum follicle-stimulating hormone concentrations. Biology of Reproduction, 73, 54–62.

Butler W.R. (2003): Energy balance relationships with follicular development, ovulation and fertility in post-partum dairy cows. Livestock Production Science, 83, 211–218.

Carvalho J.B.P., Carvalho N.A.T., Reis E.L., Nichi M., Souza A.H., Baruselli P.S. (2008): Effect of early luteolysis in progesterone-based AI protocols in *Bos indicus*, *Bos indicus* × *Bos taurus* and *Bos taurus* heifers. Theriogenology, 69, 167–175.

Cavestany D., Vinoles C., Crowe M.A., La Manna A., Mendoza A. (2009): Effect of prepartum diet on post-partum ovarian activity in Holstein cows in a pasture-based dairy system. Animal Reproduction Science, 114, 1–13

Crowe M.A. (2008): Resumption of ovarian cyclicity in post-partum beef and dairy cows. Reproduction in Domestic Animals, 43, 20–28.

Darwash A.O., Lamming G.E., Woolliams J.A. (1997): Estimation of genetic variation in the interval from calving to postpartum ovulation of dairy cows. Journal of Dairy Science, 80, 1227–1234.

Figueiredo R.A., Barros C.M., Pinheiro O.L., Soler J.M.P. (1997): Ovarian follicular dynamics in Nelore breed (*Bos indicus*) cattle. Theriogenology, 47, 1489–1505.

- Galvao K.N., Frajblat M., Butler W.R., Brittin S.B., Guard C.L., Gilbert R.O. (2010): Effect of early postpartum ovulation on fertility in dairy cows. Reproduction in Domestic Animals, 45, E207–E211.
- Garmo R.T., Ropstad E., Havrevoll O., Thuen E., Steinshamn H., Waldmann A., Reksen O. (2009): Commencement of luteal activity in three different selection lines for milk yield and fertility in Norwegian red cows. Journal of Dairy Science, 92, 2159–2165.
- Garverick H.A. (1997): Ovarian follicular cysts in dairy cows. Journal of Dairy Science, 80, 995–1004.
- Gaur M., Purohit G.N. (2007): Follicular dynamics in Rathi (*Bos indicus*) cattle. Veterinarski Arhiv, 77, 177–186.
- Ginther O.J., Kastelic J.P., Knopf L. (1989): Composition and characteristics of follicular waves during the bovine estrous cycle. Animal Reproduction Science, 20, 187–200.
- Ginther O.J., Kot K., Kulick L.J., Wiltbank M.C. (1997): Emergence and deviation of follicles during the development of follicular waves in cattle. Theriogenology, 48, 75–87.
- Ginther O.J., Beg M.A., Donadeu F.X., Bergfelt D.R. (2003): Mechanism of follicle deviation in monovular farm species. Animal Reproduction Science, 78, 239–257.
- Hamilton S.A., Garverick H.A., Keisler D.H., Xu Z.Z., Loos K., Youngquist R.S., Salfen B.E. (1995): Characterization of ovarian follicular cysts and associated endocrine profiles in dairy cows. Biology of Reproduction, 53, 890–898.
- Hayashi K.G., Matsui M., Shimizu T., Sudo N., Sato A., Shirasuna K., Tetsuka M., Kida K., Schams D., Miyamoto A. (2008): The absence of *corpus luteum* formation alters the endocrine profile and affects follicular development during the first follicular wave in cattle. Reproduction, 136, 787–797.
- Hommeida A., Nakao T., Kubota H. (2005): Onset and duration of luteal activity postpartum and their effect on first insemination conception rate in lactating dairy cows. Journal of Veterinary Medical Science, 67, 1031–1035.
- Hooijer G.A., van Oijen M., Frankena K., Valks M.M.H. (2001): Fertility parameters of dairy cows with cystic ovarian disease after treatment with gonadotrophin-releasing hormone. Veterinary Record, 149, 383–386.
- Kafi M., Mirzaei A. (2010): Effects of first postpartum progesterone rise, metabolites, milk yield, and body condition score on the subsequent ovarian activity and fertility in lactating Holstein dairy cows. Tropical Animal Health and Production, 42, 761–767.
- Kamimura S., Ohgi T., Takahashi M., Tsukamoto T. (1993a): Postpartum resumption of ovarian activity and uterine involution monitored by ultrasonography in

- Holstein cows. Journal of Veterinary Medical Science, 55, 643–647.
- Kamimura S., Ohgi T., Takahashi M., Tsukamoto T. (1993b): Turnover of dominant follicles prior to first ovulation and subsequent fertility in postpartum dairy cows. Reproduction in Domestic Animals, 28, 85–90.
- Kawashima C., Kaneko E., Montoya C.A., Matsui M., Yamagishi N., Matsunaga N., Ishii M., Kida K., Miyake Y.I., Miyamoto A. (2006): Relationship between the first ovulation within three weeks postpartum and subsequent ovarian cycles and fertility in high producing dairy cows. Journal of Reproduction and Development, 52, 479–486.
- Kawashima C., Fukihara S., Maeda M., Kaneko E., Montoya C.A., Matsui M., Shimizu T., Matsunaga N., Kida K., Miyake Y.I., Schams D., Miyamoto A. (2007): Relationship between metabolic hormones and ovulation of dominant follicle during the first follicular wave post-partum in high-producing dairy cows. Reproduction, 133, 155–163.
- Kengaku K., Tanaka T., Kamomae H. (2007): Changes in the peripheral concentrations of inhibin, follicle-stimulating hormone, luteinizing hormone, progesterone and estradiol-17 beta during turnover of cystic follicles in dairy cows with spontaneous follicular cysts. Journal of Reproduction and Development, 53, 987–993.
- Lucy M.C. (2007): The bovine dominant ovarian follicle. Journal of Animal Science, 85, E89–E99.
- Mihm M., Austin E.J. (2002): The final stages of dominant follicle selection in cattle. Domestic Animal Endocrinology, 23, 155–166.
- Morris M.J., Walker S.L., Jones D.N., Routly J.E., Smith R.F., Dobson H. (2009): Influence of somatic cell count, body condition and lameness on follicular growth and ovulation in dairy cows. Theriogenology, 71, 801–806.
- Murphy M.G., Boland M.P., Roche J.F. (1990): Pattern of follicular-growth and resumption of ovarian activity in postpartum beef suckler cows. Journal of Reproduction and Fertility, 90, 523–533.
- Noble K.M., Tebble J.E., Harvey D., Dobson H. (2000): Ultrasonography and hormone profiles of persistent ovarian follicles (cysts) induced with low doses of progesterone in cattle. Journal of Reproduction and Fertility, 120, 361–366.
- Opsomer G., Mijten P., Coryn M., deKruif A. (1996): Post-partum anoestrus in dairy cows: A review. Veterinary Quarterly, 18, 68–75.
- Peter A.T., Vos P., Ambrose D.J. (2009): Postpartum anestrus in dairy cattle. Theriogenology, 71, 1333–1342.
- Opsomer G., Coryn M., Deluyker H., de Kruif A. (1998): An analysis of ovarian dysfunction in high yielding dairy cows after calving based on progesterone profiles. Reproduction in Domestic Animals, 33, 193–204.

- Rasch D., Masata O. (2006): Methods of variance component estimation. Czech Journal of Animal Science, 51, 227–235.
- Sakaguchi M. (2011): Practical aspects of the fertility of dairy cattle. Journal of Reproduction and Development, 57, 17–33.
- Sakaguchi M., Sasamoto Y., Suzuki T., Takahashi Y., Yamada Y. (2004): Postpartum ovarian follicular dynamics and estrous activity in lactating dairy cows. Journal of Dairy Science, 87, 2114–2121.
- Sakaguchi M., Sasamoto Y., Suzuki T., Takahashi Y., Yamada Y. (2006): Fate of cystic ovarian follicles and the subsequent fertility of early postpartum dairy cows. Veterinary Record, 159, 197–201.
- Sartori R., Haughian J.M., Shaver R.D., Rosa G.J.M., Wiltbank M.C. (2004): Comparison of ovarian function and circulating steroids in estrous cycles of Holstein heifers and lactating cows. Journal of Dairy Science, 87, 905–920.
- Savio J.D., Keenan L., Boland M.P., Roche J.F. (1988): Pattern of growth of dominant follicles during the estrouscycle of heifers. Journal of Reproduction and Fertility, 83, 663–671.
- Savio J.D., Boland M.P., Hynes N., Roche J.F. (1990a): Resumption of follicular activity in the early postpartum period of dairy cows. Journal of Reproduction and Fertility, 88, 569–579.
- Savio J.D., Boland M.P., Roche J.F. (1990b): Development of dominant follicles and length of ovarian cycles in post-partum dairy cows. Journal of Reproduction and Fertility, 88, 581–591.
- Sheldon I.M., Dobson H. (2004): Postpartum uterine health in cattle. Animal Reproduction Science, 82–83, 295–306.
- Šichtař J., Tolman R., Rajmon R., Klabanová P., Berka P., Volek J. (2010): A comparison of the follicular dynamics in heifers of the Czech Fleckvieh and Holstein breeds. Czech Journal of Animal Science, 55, 234–242.
- Silvia W.J., Hatler T.B., Nugent A.M., da Fonseca L.F.L. (2002): Ovarian follicular cysts in dairy cows: an abnormality in folliculogenesis. Domestic Animal Endocrinology, 23, 167–177.
- Sirois J., Fortune J.E. (1988): Ovarian follicular dynamics during the estrous-cycle in heifers monitored by real-

- time ultrasonography. Biology of Reproduction, 39, 308–317.
- Tanaka T., Arai M., Ohtani S., Uemura S., Kuroiwa T., Kim S., Kamomae H. (2008): Influence of parity on follicular dynamics and resumption of ovarian cycle in postpartum dairy cows. Animal Reproduction Science, 108, 134–143.
- Vanholder T., Leroy J., Dewulf J., Duchateau L., Coryn M., de Kruif A., Opsomer G. (2005): Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst formation or first ovulation pp. Reproduction in Domestic Animals, 40, 460–467.
- Velazquez M.A., Spicer L.J., Wathes D.C. (2008): The role of endocrine insulin-like growth factor-I (IGF-I) in female bovine reproduction. Domestic Animal Endocrinology, 35, 325–342.
- Wathes D.C., Bourne N., Cheng Z., Mann G.E., Taylor V.J., Coffey M.P. (2007a): Multiple correlation analyses of metabolic and endocrine profiles with fertility in primiparous and multiparous cows. Journal of Dairy Science, 90, 1310–1325.
- Wathes D.C., Cheng Z., Bourne N., Taylor V.J., Coffey M.P., Brotherstone S. (2007b): Differences between primiparous and multiparous dairy cows in the interrelationships between metabolic traits, milk yield and body condition score in the periparturient period. Domestic Animal Endocrinology, 33, 203–225.
- Wilson S.J., Kirby C.J., Koenigsfeld A.T., Keisler D.H., Lucy M.C. (1998): Effects of controlled heat stress on ovarian function of dairy cattle. 2. Heifers. Journal of Dairy Science, 81, 2132–2138.
- Zain A.E.D., Nakao T., Raouf M.A., Moriyoshi M., Kawata K., Moritsu Y. (1995): Factors in the resumption of ovarian activity and uterine involution in postpartum dairy cows. Animal Reproduction Science, 38, 203–214.
- Zhang J., Deng L.X., Zhang H.L., Hua G.H., Han L., Zhu Y., Meng X.J., Yang L.G. (2010): Effects of parity on uterine involution and resumption of ovarian activities in postpartum Chinese Holstein dairy cows. Journal of Dairy Science, 93, 1979–1986.

Received: 2012–06–11 Accepted after corrections: 2012–10–16

Corresponding Author

Ing. Jiří Šichtař, Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Kamýcká 129, 165 21 Prague-6 Suchdol, Czech Republic Tel. +420 224 382 944, fax +420 234 381 841, e-mail: sichtar@af.czu.cz