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INTRODUCTION

We describe methods of variance component esti-
mation for the simplest case, the one-way ANOVA, 
and demonstrate most of them by some data sets. 
For this purpose we assume that a sample of a levels 
of a random factor A has been drawn from the uni-
verse of factor levels which is assumed to be large. 
Not to be too abstract let us assume that the levels 
are sires. From the i-th sire a random sample of ni 
daughters is drawn and their milk yield yij recorded. 
The scheme of the

        a
N = Σ ni
        i=1

observations is given in Table 1. This case is called 
balanced if for each of the sires the same number 
of daughters has been selected. Balancedness in 
higher nested classification means equal subclass 
numbers as well as equal numbers of levels of nest-
ed factors within each of the levels of factors of a 
higher order in the hierarchy. Some of the methods 
described below differ from others only in the case 
of unbalanced data, which means in the one-way 
ANOVA that not for all the sires the number of 
daughters is the same. Therefore we simulated an 
unbalanced data set.

Not for all methods formulae will be given and 
only the principle is explained. The reason is that 
we wrote this paper mainly for non-mathematicians 
who often use several methods and need some basic 
understanding of what they are doing in applying 
special methods. Advantages and disadvantages of 
the methods are discussed.

According to Rasch et al. (1999) the model equa-
tion is given in (1) 

yij = E(yij) + eij = µ + ai + eij   
  i = 1, …, a; j = 1, …, ni  	 (1)

where: 	 ai 	 =	 the main effects of the levels Ai. They are 
random variables 

	 eij 	 =	 the errors, also random 
	 µ 	 = 	constant = the overall mean

Model (1) is completed by the assumptions 
(E() = expectation of = mean of; V() = variance of)
E(ai) = 0, V(ai) = σ2

a , E(eij) = 0, V(eij) = σ2; all com-
ponents on the right side of (1) are independent 	 (2)
σ and σ2 are called variance components. 

The total number of observations is always denot-
ed by N, in the balanced case we have N = an. In the 
sequel we give the formulae for the balanced case, 
generalization can be found in the references.

Let us assume that all the random variables in (1) 
are normally distributed even if this is not needed 
for all the methods.
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The normal distribution (Gauss-distribution) has 
the density (or likelihood) function

             
   1  

          1
f(y) =                  e      

(y – µ)2     

    (σ >0)	 (3)
             σ√2π        

2σ2

We say that y is N(µ; σ2)-distributed. If we have a 
random sample yT = (yi, ....,yn), its density is equal 
to the product of the densities of its components.

From (1), (2) and the normality assumption it 
follows that the ai and the eij are independently of 
each other N(0;σa

2  )- and N(0;σ2)-distributed, re-
spectively. The yij are not independently of each 
other N(µ; σ2+ σa

2 )-distributed. The dependence 
exists between variables within the same factor 
level because

cov(yij, yil) = cov(µ + ai + eij, µ + ai + eil) = 

= cov(ai, ai) = var(ai) = σa
2           if j ≠ 1

A standardized measure of this dependence is 
the intra-class correlation coefficient

         
     σa

2        
ρIC =                     	 (4)
          σa

2    + σ2

The analysis of variance (ANOVA) table is that 
of Table 2.

In Table 2 and the sequel we use standard nota-
tion with SS = sum of squares, MS = mean squares, 
df = degrees of freedom, res = residual, T = total 
and E() = expectation of. Further a dot in place of 
a suffix means summation over that suffix and an 
additional bar above the y means dividing by the 
number of summands. Especially we have 

        
 1

   ni
yi. =        Σ yij
         

ni  j=1

The column “expected mean squares – E(MS)” in 
Table 2 is helpful to evaluate variance component 
estimators by the ANOVA method.

Some of the methods are developed for unbal-
anced data. Therefore we also assume a generaliza-
tion of (1) by a general linear model for one random 
factor in (5).

Y = Xα + Uβ + e	 (5)

with random vectors Y and e of length N, design 
matrices X (Nxq) and U (Nxm), vector α of length 
q with fixed effects and random vector β of length 
m. We complete the model (5) by the following 
assumptions:

rank(X) = q; rank(U) = m. 
the vectors e and β are independently normally 

distributed with expectation vector zero and cov-
ariance matrix σ2IN and σa

2  Im, respectively.
For more details and application in genetics see 

Sorensen and Gianola (2002).

The numerical example

By random number generation we received a data 
set with a = 100 sires with ni daughters as given 
in Table 3. We had in mind milk yields of heifers 
during the full first lactation with an assumed herit-
ability coefficient. 

Table 1. Observations in a one-way layout of ANOVA – 
unbalanced case

Level A1 Level A2 … Level Aa

y11 y21 … ya1

y12 y22 . ya2

. . . .

. . .

y1n1
y2n2

… yana

Table 2. ANOVA table of one-way ANOVA model II in the balanced case

Source of variation SS df MS E(MS)

Factor A
           

a   n
SSA = Σ Σ (yi – y)2

          
i=1  j=1

a–1
              SSAMSA = 
              a – 1

σ2 + nσα
2

Residual
             

a   n
SSRes = Σ Σ (yij – yi.)

2

            
i=1  j=1

a(n–1)
                 SSAMSRes = 
               a(n – 1)

σ2

Total
           

a   n
SST = Σ Σ (yij – y)2

          
i=1  j=1

an–1
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              σ2
gh2 =                  = 0.4

          σ
2
g  + σ2

Because 
        

 1σ2
α  =     σ2

g  , 
         4

this can be verified for instance by σ2 = 6 and σ2
α  = 1.  

Without loss of generality the overall mean was put 
equal to µ = 7 000. By (4) we get 
              

  1ρIC =            = 0.14283
             1 + 6

The data were generated in two steps. For both 
steps we used the pseudo-random-number genera-
tor of SPSS (transform – compute), which generates 
normally distributed random numbers with given 

mean and variance. At first we generated the 100 
sire means distributed as N(7 000, 1). The num-
bers were repeated ni times for each of the sires 
according to Table 3. In the second step to all of 
these values we added the effect of random error 
(environmental effect) distributed as N(0, 6). In this 
way we got a simulated value for each daughter. 

In Figure 1 a part of the data is shown. The number 
of the sires can be found in the first column.

In Figure 2 the SPSS output of simple descriptive 
statistics over all data is shown.

Figure 2 shows that our random number genera-
tor works well. Mean (7 000) and total variance (7) 
is represented quite well and normality is reached 
because the estimated values of skewness and kur-
tosis are negligible (these parameters are zero in 
normal distributions). We therefore can use our 

Table 3. Numbers of daughters of 100 sires

Sire   1–30 ni = 30 Sire 71–75 ni = 23

Sire 31–41 ni = 29 Sire 76–80 ni = 22

Sire 42–50 ni = 28 Sire 81–85 ni = 21

Sire 51–56 ni = 27 Sire 86–90 ni = 20

Sire 57–60 ni = 26 Sire 91–95 ni = 19

Sire 61–65 ni = 25   Sire 96–100 ni = 18

Sire 66–70 ni = 24  

Figure 1. A part of the generated data (first lactation milk yield of 2 597 daughters)
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generated data set to compare the different meth-
ods of variance component estimation for the one-
way-ANOVA. Methods giving estimates near σ2

a   = 1  
and σ2 = 6 as used in the data generation are ac-
ceptable. 

Properties of estimators

Before we discuss the different methods of esti-
mating the variance components, we will introduce 
some theory about estimators. The following ran-
dom variables can also be vectors – it follows from 
the context when this is the case. 

Definition 1: The estimator θ̂   = θ̂  (y) is a map-
ping of a random sample y = (y1,…, yn)T (T means a 
transposed vector) of size n on the parameter space 
of parameter θ of the distribution of this sample. 
The realization of the estimator is called an esti-
mate θ̂   (y). 

Definition 2: The estimator θ̂   = θ̂   (y) is unbiased 
if Eθ̂   = θ. The difference E(θ̂  ) – θ = vn(θ) is the bias 
of the estimator. The bias of an unbiased estimator 
is zero. The expression

E[{θ̂   – θ}2] = V(θ̂  ) + v2
n (θ)

is called the mean squared error of θ̂   = θ̂  (y) (MSE). 
The mean squared error of an unbiased estimator 
equals its variance. 

In Figure 2 θ̂  1 is biased and θ̂  2 is unbiased.
Example 1: The estimator   
           n

       
   Σ yi

          i=1
µ̂   =              = y–

       
    n

of the mean µ of the components of a random sam-
ple yT = (y1, ..., yn) is unbiased.

Definition 3: The estimator θ̂  = θ̂  (y) of θ is 
called minimum variance (or best) unbiased lin-
ear (MVUL) or quadratic (MVUQ) estimator if its 
variance is minimum amongst all unbiased linear 
and quadratic estimators, respectively. 

Definition 4: The estimator θ̂   = θ̂  (y) of θ is called 
minimum mean squared error estimator (MMSE) 
if its mean squared error MSE is minimum.

The estimator  
           n

       
   Σ yi

          i=1
µ̂   =              = y–

       
    m

of the mean µ in example 1 is a minimum vari-
ance (or best) unbiased linear estimator, shortly 
a BLUE.

Definition 5: Let f(y, θ) be the density function 
of θ, the parameter of the distribution of a random 
variable y. This is a function of two variables, θ and 
y. If we call it density function, we consider it as a 
function of y for fixed θ. But the same function f(y, 
θ) as a function of θ for fixed y is called likelihood 
function. If we estimate θ so that it will maximize 
the likelihood function in the parameter space of 
θ, we call the corresponding estimator Maximum-
Likelihood Estimator (MLE). 

Definition 6: The estimator is called minimum norm 
quadratic unbiased invariant estimator – MINQUE, 
if it is a quadratic form of Y in (5), unbiased and in-
variant against the translation of fixed effect Xα in 
(5) and minimizing a matrix norm. For more details 
see Rao (1971), the first paper on MINQUE.

Before we discuss some of the existing methods of 
estimation, let us make a general remark. In (1) the 
model equation of the random variables y is given. 
Its realisations as well as the data observed are de-
noted by the non-bold letter y. Mathematical opera-
tions as minimizing (least squares) or maximizing 
(likelihood) can be performed for the realizations 
only. The result of such an optimisation is the es-
timate, the function of the y. If this is an explicit 
formula, we obtain the estimator by replacing the 
y-s in that formula by the random variables y. In 
implicit formulae the estimator cannot be repre-
sented in closed form but nevertheless some (often 
asymptotic) properties can be derived.

Estimation of the variance components

We first present methods for the so-called fre-
quency approach. In this approach we assume 
that the parameters of the distribution and by 
this especially the overall mean and the variance 
components are fixed but unknown real values or 
vectors. In the sequel we use for all the methods 
the same symbols s2 and sα

2  for the estimates of the 

2
ˆE E( 1

ˆ )

   vn( )

E( )

Figure 2. The parameter value θ estimated by θ̂  1 and θ̂  2 
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corresponding variance components σ2 and σa
2  , 

respectively. The estimators are given by printing 
all random variables bold.

Frequency approach

Analysis of variance method (ANOVA-method) 

The oldest and simplest method of estimating the 
two variance components is due to Fisher (1925). 
In this method we replace in the column E(MS) of 
the ANOVA table the variance components any σ 
by its estimate s and put the resulting expressions 
equal to the observed MS and finally we solve the 
resulting equations. In our special case of the bal-
anced one-way classification this leads to

s2 + nsα
2  = MSA

s2 = MSres

Solving these equations gives: 

s2 = MSres	 (6)

         1
sα

2   =      (MSA – MSres )	 (7)

         
n

Properties of the estimators
Minimum variance unbiased quadratic estima-

tor for any continuous distribution with existing 
first two moments (milk yield, body weight and 
so on) and Minimum variance quadratic estima-
tor for normal distributions. These are not always 
estimators because (7) can become negative, which 
means that it is not a mapping into the parameter 
space (the positive real line) as necessary for the 
estimator according to definition 1. The probability 
of a negative estimator is given by

                                                            
1P(sα

2   < 0) = P[F(a– 1, a(n – 1)) <          
σa

2 
     ]	 (8)

                                                      1 + n      
                                                                σ

2

In (8) F(a– 1, a(n – 1)) is a random variable with 
an F–distribution with a–1 and a(n–1) d.f. Tables 
for these probabilities are given by Verdooren 
(1982).

If in our simulated example we assume ap-
proximately a mean sample size of 26, formula (8) 
gives 

                                                     
1             1P(sα

2   < 0) = P[F(99.2497) < q =         
1

  =        = 
                                                   1+26       

5.33

                                                            6
= 0.1875 ] = 0

For some other values of σa
2   and σ2 the corre-

sponding probabilities can be found in Table 4.
To have a real chance to find negative estimates, 

the environmental variance should be for instan-
ce 30 instead of 6 or the degrees of freedom must 
be smaller (this means, we expect negative esti-
mates only for insufficient sample sizes). Therefore 
negative estimates should not be expected in our 
simulation study.

Quasi-maximum-likelihood method (QML)

A maximum likelihood estimate is obtained by 
minimizing the likelihood function of the sample 
under the restriction that the solution lies in the 
parameter space. Without this restriction some 
variance components may be negative. Because 
we then do not have an estimator in the sense of 
definition 1, we call the method quasi-maximum-
likelihood method. If we replace in this minimum 
the realizations of the random variables by the 
random variables, we obtain the quasi-maximum 
likelihood estimator. Because the family of nor-
mal distributions is a two-parametric exponential 
family with the set of complete minimal sufficient 
statistics (see Rasch, 1995)

          
1

    a  n
y.. =        Σ Σyij, SSres, SSA
         

an
 i=1 j=1

the likelihood function of the data in Table 1 can 
be written as

                         1    1                    1                        1
                              e{– 2 [ σ2 

SSres + σ2 + nσ2  SSA +
 σ2 + nσ2 

(y – µ)2]}
f(y11, ..., yab) =                                                        

                       (2π)
an

(σ2)
a(n – 1)

(σ2 + σ2
a  )

a

                              
   

2
               

2
                            

2

Deriving the logarithm2 of this likelihood func-
tion with respect to µ and the two variance com-
ponents without side conditions to restrict the 
solutions to the parameter space leads to the fol-
lowing estimators:

Table 4. Descriptive statistics of 2 597 milk yields

Character Number of measurements Mean Variance Skewness Kurtosis
Milk yield 2 597 6 999.9 6.944 0.002 –0.004



232

Review Article	 Czech J. Anim. Sci., 51, 2006 (6): 227–235

µ̂    =  -y  
s2 = MSres

	 (9)
          1   a – 1sα

2  =     (           MSA – MSres)	 (10)
         n      a

Equations (6) and (9) are identical, sα
2  in (10) is 

biased and has a higher probability of becoming 
negative than the estimator in (7). The estimator 
of µ is needed to replace the µ in the equations 
stemming from the derivations with respect to the 
variance components only.

Maximum-likelihood method (ML)

Herbach (1959) derived a real maximum likeli-
hood estimator (solutions restricted to the param-
eter space). 

                           SSres + SSAs2 = min[MSres,                      ]	 (11)
                                 an

       
1

              
a – 1s2

a  =    max{[            MSA – MSRES];0}	 (12)
      

n                a

Both estimators are biased.

Restricted maximum-likelihood method (REML)

Anderson and Bancroft (1952) introduced a re-
stricted ML method. This method uses a translation 
invariant restricted likelihood function depending 
on the variance components to be estimated only 
and not on the fixed effects like µ. This restricted 
likelihood function as a function of the sufficient 
statistics for the variance components. The latter 
is then derived with respect to the variance com-
ponents under the restriction that the solutions are 
non-negative. The solutions are:

                           SSres + SSAs2 = min[MSres,                       ]	 (13)
                                 an– 1

       
1

              
s2

a  =    max{[ MSA – MSRES];0}	 (14)
      

n                

Modified maximum-likelihood method (MML)

Stein (1964) and Kotz et al. (1969) found modified 
ML-estimators which have uniformly smaller mean 
squared error compared with the ML estimators of 
Herbach in (11) and (12). They are given by:

                       SSres + SSA     SSres + SSA + any–  2
s2 = min[MSres,                  ,                               ]	(15)

                          an + 1             an + 2

        
1

                  
a – 1s2

a   =    min〈max{[          MSA – MSres];0}; max
       

n                  a + 1

    SSA + any–  2{[                   – MSres];0}〉	 (16)
      an + 2

Federer’s estimator

From the Bayesian aspect  it could be shown 
that some of the truncated estimators above are 
inadmissible. The following non-truncated and 
nonnegative estimators could not be proved to be 
inadmissible but they were not proved to be admis-
sible either (there is no uniformly better estima-
tor). The advantage of the estimators proposed by 
Federer (1968) is that they and their distribution 
function can be expressed in an analytical form.

s2 = MSres	 (17)
        

 1sa
2  =      [MSA – MSres (1 – e–δmsa)]	 (18)

          n

For δ Federer proposed to choose a value in the 
interval

             
  1δ ∈[0,          ]

            SSres

Minimum-norm and minimum-variance quadratic 
unbiased estimators (MINQUE)

We now consider model equation (5) with its side 
conditions. This model is especially useful if we 
consider higher classifications and mixed models. 
In this case the estimator is called invariant if it is 

Table 5. Probabilities of negative estimates for f1 = 99, f2 = 2 497, n = 26 and several values of σa
2  

Value of σa
2  /σ2 h2 q Probability

6 0.40 0.19 0.000000000
20 0.17 0.43 0.000000233
25 0.14 0.49 0.000005901
30 0.12 0.54 0.000052454
40 0.09 0.61 0.000790015
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not influenced by the translation of non-random 
elements of the model. Rao (1971a, 1972) devel-
oped methods to estimate linear combinations of 
all the variance components in model (5). We will 
not go into details because for an understanding 
some knowledge of matrix algebra is needed. The 
basic idea is to find unbiased quadratic estimators 
which are invariant and minimize some matrix 
norm. Unfortunately, the solution in the most in-
teresting cases depends on the unknown variance 
components. If they are replaced by estimates from 
the data, the solution is neither unbiased nor quad-
ratic any longer. In SPSS the MINQUE procedure is 
the default method. MINQUE can result in negative 
estimates and the method to avoid this leads to 
neither unbiased nor quadratic estimators again.

Minimum-variance and minimum-mean squared 
error quadratic estimator

These procedures were developed mainly by Rao 
(1971b) and LaMotte (1973). The basic idea is to 
determine the matrix A of a quadratic form YT AY 
of the vector Y in (5) so that an unbiased estimator 
with minimum variance (Rao, 1971b) or an estima-
tor with minimum mean squared error (LaMotte, 
1973) is obtained. On principle, the same problems 
arise as with the MINQUE procedure.

There are further proposals for estimators but 
we consider those discussed above as the most im-
portant ones from the practical point of view. For 
more details and variation of the above methods 
see Sarhai and Ojeda (2004, 2005).

Bayesian and empirical Bayesian approach 
and Markov chain Monte Carlo (MCMC) 
methods

We now only shortly mention methods for the 
so-called Bayesian approach. In this approach we 
assume that the parameters of the distribution and 
by this especially the variance components are ran-
dom variables with some prior knowledge of their 
distribution. This prior knowledge is sometimes 
given by an a priori distribution, sometimes by data 
from an earlier experiment. This prior distribution 
is combined with the likelihood of the sample re-
sulting in a posterior distribution. The estimator is 
used in such a way that it minimizes the so-called 
Bayes risk. If we use the squared error loss as this 
risk, the mean of the marginal posterior distribu-
tion is the Bayes estimator. The problem is the 
selection of a posterior distribution which should 

cover the user’s knowledge (or imagination) of the 
unknown parameters to be estimated. So-called 
non-informative prior distribution is often used 
which in the one-way lay-out leads exactly to the 
Quasi-Maximum-Likehood method (QML). For 
more details see Gelman et al. (1995).

Method of Tiao and Tan

We explain the Bayes method by an approach 
of Tiao and Tan (1965). We assume like in (QML) 
that the random variables on the left side in (1) are 
normally distributed with the likelihood function 
given in QML 

                          1    1                  1                         1
                              e{– 2 [ σ2 

SSres +
 σ2 + nσ2  SSA + σ2 + nσ2 (y – µ)2]}

f(y11, ..., yab) =                                                        
                       (2π)

an
(σ2)

a(n – 1)
(σ2 + σ2

a  )
a

                              
   

2
                2                           

2

For the three parameters µ, σ2, σ2
a   the prior dis-

tribution is chosen as:
                  1
fprior(                    ), 0 < σ2 < σ2 + σ2

a  	 (19)
         σ

2 (σ2 + σ2
a  )

By combining the prior with the likelihood function 
gives the posterior distribution proportional to

fposterior(µ, σ2, σ2
a  |y11, ..., yab) ∝

          1    1                  1                         1
        e{– 2 [ σ2 

SSres +
 σ2 + nσ2  SSA + σ2 + nσ2 (y – µ)2]}

   ∝                                                    
     (2π)

an
(σ2)

a(n – 1)
(σ2 + σ2

a  )
a

            
   

2
               

2
                            

2

Integrating over µ yields in the marginal distribu-
tion of the two variance components.

We now obtain the marginal distribution of each 
of the variance components by integrating over the 
other one. This leads to integral equations which 
can be solved by some computer programs.

For a squared error loss as the Bayes risk Klotz 
et al. (1969) found the Bayes estimators.

Gibbs sampling 

Gibbs sampling is mainly used in the Bayesian 
context. Shortly spoken it is an iterative improve-
ment of prior information.

Before we discuss the Gibbs sampling, we will 
define what is understood by data augmentation.

Let a posterior density be given by

p(θ|y) = ∫p(θ|y,z)p(z|y)dz,
                z

where:	p(θ|y) 	 =	 denotes the posterior density of the pa-
rameter θ given the observation y
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	 p(z|y)	 = 	denotes the predictive density of some 
so-called latent data z 

	 p(θ|y,z)	 = the conditional density of θ given the 
so-called augmented data x = (y,z)

Then the predictive density is given by

p(z|y) = ∫p(z|φ,y)p(φ|y)dφ,
                z

where:	p(z|φ,y)	=	the conditional predictive density

After substitution and interchanging the order 
of integration we obtain

g(θ) = ∫K(θ,φ)g(φ)dφ, 

with 

K(θ,φ) = ∫p(θ|y,z)p(z|φ)dz	 (22)

and

g(θ) = p(θ|y)

Starting with some initial 

g0(θ)		   we solve (22) by iteration via

gi+1(θ) = ∫K(θ,φ)gi(φ)dφ	 (i = 0, 1,…)

Gibbs sampling is based on so-called chained 
data augmentation (the chain is a Markov chain 
and Gibbs sampling is a multivariate special type 
of MCMC = Markov chain Monte Carlo).

When the (considered as a random variable) 
unknown parameter is a vector – as it is usually 
the case in variance component estimation – then 
the procedure works as follows. At first we have 
to know or to assume the conditional densities of 
each of the components of  

θT = (θ1, ..., θp)  

given the other components. We start with some 
initial value θT

0
    = (θ1

0  , ..., θp
0  ) of θT = (θ1, ..., θp) and 

then iterate where each iteration is defined by the 
following loop:

Sample θ1
i   +1

  from p(θ1|θ2
i   , ... , θp

i  , y);
Sample θ2

i   +1 from p(θ2|θ1
i  +1, θ3

i  , ..., θp
i  , y);

.

.
Sample θp

i   +1 from p(θp|θ1
i  +1, ..., θp

i  
–
+  

1
1 , y)

As a good tool for those who want to be deeply 
engaged in Gibbs sampling we recommend two 
Fortran programs described in Reinsch (1996) 
and for the theoretical background to Gamerman 
(1997).

Results of some methods of variance component 
estimation

Results of the methods ANOVA, QML, REML 
and MINQUE could be obtained via the SPSS 
menu 

Analyze
	 General linear model
		  Variance components

and then selecting the methods by the button “op-
tions”.

Federer’s method was not used because it assumes 
balanced data which need not really occur in animal 
breeding. MIVQUE was calculated by SAS.

The results of the methods applied to our gener-
ated data set are shown in Table 6. 

The methods differ only slightly from each other. 
By all methods the variance component between 
the sires is a little bit overestimated while the re-
sidual variance component is a bit underestimated. 
The total variance (known to be 7) is estimated 
quite well by all methods. And all methods seem 
to work quite well in unbalanced one-way ANOVA 
models. But this may be quite different for higher 
classifications and covariates in the models.

Such conclusions can be drawn only if we apply 
the different methods to a data set for which the 
parameters are known like in our simulated data. 
Otherwise we can only see differences between 
the methods but we do not know which of them 
is good.

Table 6. Estimates of the variance components from the data set by different methods

Method Estimate of σa
2 Estimate of σ2 Total variance

ANOVA 1.060 5.894 6.954
QML 1.071 5.896 6.967
REML 1.084 5.896 6.980
MINQUE 1.096 5.895 6.991
MIVQUE 1.027 5.927 6.954
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