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Methods of variance component estimation

D. RascH, O. MASATA
Biometric Unit, Research Institute of Animal Production, Prague-Uhfinéves, Czech Republic

ABSTRACT: Estimation of variance components is a method often used in population genetics and applied in
animal breeding. Even experienced population geneticists nowadays feel lost if confronted with the huge set of
different methods of variance component estimation. Especially because there exists no uniformly best method, a
decision which method should be used is often difficult to take. This paper gives a complete overview of methods
existing in the simplest case of a one-way lay-out and demonstrates some of them by a numerical example for
which the true situation is known. Of course, the one-way lay-out is of limited practical interest but can best be
used to explain animal scientists the basic principles of the methods. These basic principles are principally also
valid for higher classifications. Advantages and disadvantages of the methods are discussed. The symbols used are
the standard biometric symbols as given in Rasch et al. (1994). We can say that all the methods offered by SPSS
can be recommended.

Keywords: one-way ANOVA; ANOVA-method; MINQUE; MIVQUE; Bayesian approach; Gibbs sampling; numeri-
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INTRODUCTION

We describe methods of variance component esti-
mation for the simplest case, the one-way ANOVA,
and demonstrate most of them by some data sets.
For this purpose we assume that a sample of a levels
of arandom factor A has been drawn from the uni-
verse of factor levels which is assumed to be large.
Not to be too abstract let us assume that the levels
are sires. From the i-th sire a random sample of ,
daughters is drawn and their milk yield yrecorded.
The scheme of the

observations is given in Table 1. This case is called
balanced if for each of the sires the same number
of daughters has been selected. Balancedness in
higher nested classification means equal subclass
numbers as well as equal numbers of levels of nest-
ed factors within each of the levels of factors of a
higher order in the hierarchy. Some of the methods
described below differ from others only in the case
of unbalanced data, which means in the one-way
ANOVA that not for all the sires the number of
daughters is the same. Therefore we simulated an
unbalanced data set.

Not for all methods formulae will be given and
only the principle is explained. The reason is that
we wrote this paper mainly for non-mathematicians
who often use several methods and need some basic
understanding of what they are doing in applying
special methods. Advantages and disadvantages of
the methods are discussed.

According to Rasch et al. (1999) the model equa-
tion is given in (1)

V= E(yij) te;=pu+a +e;

i=1,.,a4j=1,..,n (1)
where: a; = the main effects of the levels Ai. They are
random variables

eij = the errors, also random
p = constant = the overall mean

Model (1) is completed by the assumptions

(E() = expectation of = mean of; V() = variance of)

E(a)=0,V(a) =02 E(e;) =0, V(e,) = 0% all com-
ponents on the right side of (1) are independent (2)
o and o are called variance components.

The total number of observations is always denot-
ed by N, in the balanced case we have N = an. In the
sequel we give the formulae for the balanced case,
generalization can be found in the references.

Let us assume that all the random variables in (1)
are normally distributed even if this is not needed
for all the methods.
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Table 1. Observations in a one-way layout of ANOVA —
unbalanced case

Level A, Level A, Level A,
Ju In Va1
Y12 Vs Yaz
ylnl J/2r12 yanﬂ

The normal distribution (Gauss-distribution) has
the density (or likelihood) function

1
1 eﬁ o -w?

o (0 >0) 3)

) =

We say that y is N(y; 0%)-distributed. If we have a
random sample y* = (y, ...,y ), its density is equal
to the product of the densities of its components.

From (1), (2) and the normality assumption it
follows that the a; and the e, are independently of
each other N(0;02)- and N(0;0%)-distributed, re-
spectively. The y,. are not independently of each
other N(y; 0%+ o;)-distributed. The dependence
exists between variables within the same factor
level because

cov(yi],, y,) =cov(u +a, + epH+a;+ e,) =

.
= cov(a, a) = var(a,) = 6> ifj=1

A standardized measure of this dependence is
the intra-class correlation coefficient

= (4)

The analysis of variance (ANOVA) table is that
of Table 2.

In Table 2 and the sequel we use standard nota-
tion with SS = sum of squares, MS = mean squares,
df = degrees of freedom, res = residual, T = total
and E() = expectation of. Further a dot in place of
a suffix means summation over that suffix and an
additional bar above the y means dividing by the
number of summands. Especially we have

1

Vi = 57
The column “expected mean squares — E(MS)” in
Table 2 is helpful to evaluate variance component
estimators by the ANOVA method.

Some of the methods are developed for unbal-
anced data. Therefore we also assume a generaliza-
tion of (1) by a general linear model for one random
factor in (5).

Y=Xa+UB+e (5)

with random vectors Y and e of length N, design
matrices X (Nxg) and U (Nxm), vector a of length
q with fixed effects and random vector [ of length
m. We complete the model (5) by the following
assumptions:

rank(X) = ¢; rank(U) = m.
The vectors e and P are independently normally

distributed with expectation vector zero and cov-
ariance matrix 6°I,;and 021 , respectively.
a m

For more details and application in genetics see
Sorensen and Gianola (2002).

The numerical example

By random number generation we received a data
set with a = 100 sires with n, daughters as given
in Table 3. We had in mind milk yields of heifers
during the full first lactation with an assumed herit-
ability coefficient.

Table 2. ANOVA table of one-way ANOVA model II in the balanced case

Source of variation SS df MS E(MS)
an §S,
Factor A 8§88, =22(y,- 7)? a-1 MS, = o+ ncaz
i=1 j=1 |
; 53 =2 SS, 2
Residual §S, =X% (yl.j -7) a(n-1) MS, o
=1 j=

Total

Res — Il(ﬂ _ 1)

an—1
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Table 3. Numbers of daughters of 100 sires

Sire 1-30 n;=30 Sire 71-75 n;=23
Sire 31-41 n;=29 Sire 76-80 n;=22
Sire 42-50 n;=28 Sire 81-85 n;=21
Sire 51-56 n;=27 Sire 86—-90 n;=20
Sire 57-60 n;=26 Sire 91-95 n;=19
Sire 61-65 n;=25 Sire 96-100 n;=18
Sire 66-70 n;=24

) mean and variance. At first we generated the 100

h? = 2—g2 =04 sire means distributed as N(7 000, 1). The num-

O, +0 bers were repeated n; times for each of the sires

Because according to Table 3. In the second step to all of

1 these values we added the effect of random error

o2 = 2 02 , (environmental effect) distributed as N(0, 6). In this

this can be verified for instance by 6® = 6 and o2 = 1.
Without loss of generality the overall mean was put
equal to p = 7 000. By (4) we get

1

= =0.14283
Pic 1+6

The data were generated in two steps. For both
steps we used the pseudo-random-number genera-
tor of SPSS (transform — compute), which generates
normally distributed random numbers with given

milkyield_sa¥ - 5P55 Daten-E ditor

way we got a simulated value for each daughter.

In Figure 1 a part of the data is shown. The number
of the sires can be found in the first column.

In Figure 2 the SPSS output of simple descriptive
statistics over all data is shown.

Figure 2 shows that our random number genera-
tor works well. Mean (7 000) and total variance (7)
is represented quite well and normality is reached
because the estimated values of skewness and kur-
tosis are negligible (these parameters are zero in
normal distributions). We therefore can use our
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Figure 1. A part of the generated data (first lactation milk yield of 2 597 daughters)
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Figure 2. The parameter value 0 estimated by 0 , and 62

generated data set to compare the different meth-
ods of variance component estimation for the one-
way-ANOVA. Methods giving estimates near ¢ = 1
and ¢ = 6 as used in the data generation are ac-
ceptable.

Properties of estimators

Before we discuss the different methods of esti-
mating the variance components, we will introduce
some theory about estimators. The following ran-
dom variables can also be vectors — it follows from
the context when this is the case.

Definition 1: The estimator 6 = é(y) is a map-
ping of a random sample y = (¥,,...,,)" (T means a
transposed vector) of size n on the parameter space
of parameter 0 of the distribution of this sample.
The realization of the estimator is called an esti-
mate 0 ().

Definition 2: The estimator 0 = 8 (y) is unbiased
if £6 = 0. The difference E(6) — 6 = v,(0) is the bias
of the estimator. The bias of an unbiased estimator
is zero. The expression

E[{0 - 6)’] = V(B) + v}(8)
is called the mean squared error of = é(y) (MSE).
The mean squared error of an unbiased estimator
equals its variance.

In Figure 2 61 is biased and 62 is unbiased.

Example 1: The estimator

of the mean p of the components of a random sam-
pley;=(y, ... y,) is unbiased.

Definition 3: The estimator 6 = 0 (y) of 0 is
called minimum variance (or best) unbiased lin-
ear (MVUL) or quadratic (MVUQ) estimator if its
variance is minimum amongst all unbiased linear
and quadratic estimators, respectively.

230

Definition 4: The estimator 8 = 6(y) of 8 is called
minimum mean squared error estimator (MMSE)
if its mean squared error MSE is minimum.

The estimator

27

=y

-
I

m

of the mean p in example 1 is a minimum vari-
ance (or best) unbiased linear estimator, shortly
a BLUE.

Definition 5: Let f{y, 8) be the density function
of 0, the parameter of the distribution of a random
variable y. This is a function of two variables, 6 and
y. If we call it density function, we consider it as a
function of y for fixed 0. But the same function f{y,
0) as a function of 0 for fixed y is called likelihood
function. If we estimate 0 so that it will maximize
the likelihood function in the parameter space of
0, we call the corresponding estimator Maximum-
Likelihood Estimator (MLE).

Definition 6: The estimator is called minimum norm
quadratic unbiased invariant estimator — MINQUIE,
if it is a quadratic form of Yin (5), unbiased and in-
variant against the translation of fixed effect Xa in
(5) and minimizing a matrix norm. For more details
see Rao (1971), the first paper on MINQUE.

Before we discuss some of the existing methods of
estimation, let us make a general remark. In (1) the
model equation of the random variables y is given.
Its realisations as well as the data observed are de-
noted by the non-bold letter y. Mathematical opera-
tions as minimizing (least squares) or maximizing
(likelihood) can be performed for the realizations
only. The result of such an optimisation is the es-
timate, the function of the y. If this is an explicit
formula, we obtain the estimator by replacing the
y-s in that formula by the random variables y. In
implicit formulae the estimator cannot be repre-
sented in closed form but nevertheless some (often
asymptotic) properties can be derived.

Estimation of the variance components

We first present methods for the so-called fre-
quency approach. In this approach we assume
that the parameters of the distribution and by
this especially the overall mean and the variance
components are fixed but unknown real values or
vectors. In the sequel we use for all the methods
the same symbols s> and s’ for the estimates of the
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Table 4. Descriptive statistics of 2 597 milk yields

Character Number of measurements Mean Variance Skewness Kurtosis
Milk yield 2 597 6 999.9 6.944 0.002 -0.004
corresponding variance components 6> and o2, 1 1
respectively. The estimators are given by printing P(s? < 0) = P|F(99.2497) < q = =——=
all random variables bold. 1 533

Frequency approach

Analysis of variance method (ANOVA-method)

The oldest and simplest method of estimating the
two variance components is due to Fisher (1925).
In this method we replace in the column E(MS) of
the ANOVA table the variance components any o
by its estimate s and put the resulting expressions
equal to the observed MS and finally we solve the
resulting equations. In our special case of the bal-
anced one-way classification this leads to

2 2 _
s+ ns, =MS,

s> =MS

Solving these equations gives:

s?=MS_, (6)
sl = % (MS, -MS,, ) (7)

Properties of the estimators

Minimum variance unbiased quadratic estima-
tor for any continuous distribution with existing
first two moments (milk yield, body weight and
so on) and Minimum variance quadratic estima-
tor for normal distributions. These are not always
estimators because (7) can become negative, which
means that it is not a mapping into the parameter
space (the positive real line) as necessary for the
estimator according to definition 1. The probability
of a negative estimator is given by

1

P(soz( <0)=P|Fa-1,a(n-1)) < (8)

2
a

0.2

l+n

In (8) F(a— 1, a(n — 1)) is a random variable with
an F-distribution with a—1 and a(n-1) d.f. Tables
for these probabilities are given by Verdooren
(1982).

If in our simulated example we assume ap-
proximately a mean sample size of 26, formula (8)
gives

1+26—
6

=0.1875|=0

For some other values of 6> and o® the corre-
sponding probabilities can be found in Table 4.

To have a real chance to find negative estimates,
the environmental variance should be for instan-
ce 30 instead of 6 or the degrees of freedom must
be smaller (this means, we expect negative esti-
mates only for insufficient sample sizes). Therefore
negative estimates should not be expected in our
simulation study.

Quasi-maximum-likelihood method (QML)

A maximum likelihood estimate is obtained by
minimizing the likelihood function of the sample
under the restriction that the solution lies in the
parameter space. Without this restriction some
variance components may be negative. Because
we then do not have an estimator in the sense of
definition 1, we call the method quasi-maximum-
likelihood method. If we replace in this minimum
the realizations of the random variables by the
random variables, we obtain the quasi-maximum
likelihood estimator. Because the family of nor-
mal distributions is a two-parametric exponential
family with the set of complete minimal sufficient
statistics (see Rasch, 1995)

Vo= n Y SS,.0 SS,4
i=1j=1
the likelihood function of the data in Table 1 can

be written as

11 1 1 2
=, SSyes + SS4+ -
e]— 2 [ 27T 2y po TAT 62 4 o o= ”

SO 0 Vo) = an
(2m)2 (0?)

a(n—1) a
2 (0%+02)2

Deriving the logarithm? of this likelihood func-
tion with respect to p and the two variance com-
ponents without side conditions to restrict the
solutions to the parameter space leads to the fol-
lowing estimators:
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Table 5. Probabilities of negative estimates for f, = 99, f, = 2 497, n = 26 and several values of ¢

Value of 02/0* W q Probability
6 0.40 0.19 0.000000000
20 0.17 0.43 0.000000233
25 0.14 0.49 0.000005901
30 0.12 0.54 0.000052454
40 0.09 0.61 0.000790015
L=y Modified maximum-likelihood method (MML)
2 _ 9
s"=MS,, ©) Stein (1964) and Kotz et al. (1969) found modified
SZ = i( a-1 MS,-MS,) (10) ML-estimators which have uniformly smaller mean
n

Equations (6) and (9) are identical, s(f in (10) is
biased and has a higher probability of becoming
negative than the estimator in (7). The estimator
of u is needed to replace the p in the equations
stemming from the derivations with respect to the
variance components only.

Maximum-likelihood method (ML)

Herbach (1959) derived a real maximum likeli-
hood estimator (solutions restricted to the param-
eter space).

S+ S8,
$* = min| M, e 74| (11)
an
2= max{[-4 21 MS, - M, ] 0] (12)

Both estimators are biased.

Restricted maximum-likelihood method (REML)

Anderson and Bancroft (1952) introduced a re-
stricted ML method. This method uses a translation
invariant restricted likelihood function depending
on the variance components to be estimated only
and not on the fixed effects like p. This restricted
likelihood function as a function of the sufficient
statistics for the variance components. The latter
is then derived with respect to the variance com-
ponents under the restriction that the solutions are
non-negative. The solutions are:

SS. +5S,
52 = min[MS,, e A (13)
res an— 1
1
2 = max{| MS,, - M5, [0} (14)
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squared error compared with the ML estimators of
Herbach in (11) and (12). They are given by:

SS .. +SS, SS.  +S8S,+any’

2 _ .
§° = mln[MSres, p—]

1(15)

an + 2

i s,
s, =, min{max P MS, - MS,, |;0;; max

([Z s, Jo

16
an + 2 (16)

Federer’s estimator

From the Bayesian aspect it could be shown
that some of the truncated estimators above are
inadmissible. The following non-truncated and
nonnegative estimators could not be proved to be
inadmissible but they were not proved to be admis-
sible either (there is no uniformly better estima-
tor). The advantage of the estimators proposed by
Federer (1968) is that they and their distribution
function can be expressed in an analytical form.

- Ms, (17)
2= - [MS, ~ MS,,, (1 - e*¥54)] (18)

For & Federer proposed to choose a value in the
interval

56[0,%

Minimum-norm and minimum-variance quadratic
unbiased estimators (MINQUE)

We now consider model equation (5) with its side
conditions. This model is especially useful if we
consider higher classifications and mixed models.
In this case the estimator is called invariant if it is
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not influenced by the translation of non-random
elements of the model. Rao (1971a, 1972) devel-
oped methods to estimate linear combinations of
all the variance components in model (5). We will
not go into details because for an understanding
some knowledge of matrix algebra is needed. The
basic idea is to find unbiased quadratic estimators
which are invariant and minimize some matrix
norm. Unfortunately, the solution in the most in-
teresting cases depends on the unknown variance
components. If they are replaced by estimates from
the data, the solution is neither unbiased nor quad-
ratic any longer. In SPSS the MINQUE procedure is
the default method. MINQUE can result in negative
estimates and the method to avoid this leads to
neither unbiased nor quadratic estimators again.

Minimum-variance and minimum-mean squared
error quadratic estimator

These procedures were developed mainly by Rao
(1971b) and LaMotte (1973). The basic idea is to
determine the matrix A of a quadratic form Y7 AY
of the vector Yin (5) so that an unbiased estimator
with minimum variance (Rao, 1971b) or an estima-
tor with minimum mean squared error (LaMotte,
1973) is obtained. On principle, the same problems
arise as with the MINQUE procedure.

There are further proposals for estimators but
we consider those discussed above as the most im-
portant ones from the practical point of view. For
more details and variation of the above methods
see Sarhai and Ojeda (2004, 2005).

Bayesian and empirical Bayesian approach
and Markov chain Monte Carlo (MCMC)
methods

We now only shortly mention methods for the
so-called Bayesian approach. In this approach we
assume that the parameters of the distribution and
by this especially the variance components are ran-
dom variables with some prior knowledge of their
distribution. This prior knowledge is sometimes
given by an a priori distribution, sometimes by data
from an earlier experiment. This prior distribution
is combined with the likelihood of the sample re-
sulting in a posterior distribution. The estimator is
used in such a way that it minimizes the so-called
Bayes risk. If we use the squared error loss as this
risk, the mean of the marginal posterior distribu-
tion is the Bayes estimator. The problem is the
selection of a posterior distribution which should

cover the user’s knowledge (or imagination) of the
unknown parameters to be estimated. So-called
non-informative prior distribution is often used
which in the one-way lay-out leads exactly to the
Quasi-Maximum-Likehood method (QML). For
more details see Gelman et al. (1995).

Method of Tiao and Tan

We explain the Bayes method by an approach
of Tiao and Tan (1965). We assume like in (QML)
that the random variables on the left side in (1) are
normally distributed with the likelihood function
given in QML

11 1 1
61_5[(?2 SSres + 2rna2 At T2 0 P)zﬂ

f(yll’ e yab) = an a(n-1) a
(2m2(6*) "2 (6*+0)2

For the three parameters y, 6, o> the prior dis-
tribution is chosen as:

1

o’ (o* + 0%) (19)

),0<0?<0’+02

f;arior(

By combining the prior with the likelihood function
gives the posterior distribution proportional to

2 2
fl’osterior(l’l’ 60, |y11’ oo yab) o
[_1
e 2
a(n—1)

@m)2 (o) 2

1 SSres + 1 SS 1
— - s (y—
o2 2+ n02 A" 62 4 no2 -w2

oc a
(6*+02)2

Integrating over pyields in the marginal distribu-
tion of the two variance components.

We now obtain the marginal distribution of each
of the variance components by integrating over the
other one. This leads to integral equations which
can be solved by some computer programs.

For a squared error loss as the Bayes risk Klotz
et al. (1969) found the Bayes estimators.

Gibbs sampling

Gibbs sampling is mainly used in the Bayesian
context. Shortly spoken it is an iterative improve-
ment of prior information.

Before we discuss the Gibbs sampling, we will
define what is understood by data augmentation.

Let a posterior density be given by

p(Oy) = jp<e|y,z>p<z|y>dz,

z

where: p(8|y) = denotes the posterior density of the pa-
rameter 0 given the observation y

233



Review Article

Czech |. Anim. Sci., 51, 2006 (6): 227235

= denotes the predictive density of some
so-called latent data z

p(0]5,2) = the conditional density of 8 given the

so-called augmented data x = (y,2z)

plz|y)

Then the predictive density is given by

plzly) = jp(zlcp,y)p(cply)dcp,

z

where: p(z|$,y) = the conditional predictive density

After substitution and interchanging the order
of integration we obtain

g(0) = jK(e,cp)gw)dcp,

with
K(6.9) = [p®ly2p(lo)dz  (22)
and
4(6) = p(6ly)
Starting with some initial
2,(9) we solve (22) by iteration via

&n® = [KOOg(@de  (i=0,1..)

Gibbs sampling is based on so-called chained
data augmentation (the chain is a Markov chain
and Gibbs sampling is a multivariate special type
of MCMC = Markov chain Monte Carlo).

When the (considered as a random variable)
unknown parameter is a vector — as it is usually
the case in variance component estimation — then
the procedure works as follows. At first we have
to know or to assume the conditional densities of
each of the components of

87=(0,..0)

1" p
given the other components. We start with some
initial value BTO = (9?, ey 92) of 67 = © . Gp) and
then iterate where each iteration is defined by the
following loop:

Sample 6! *! from p(6,]6%, ..., 61’;, y);

Sample ;"' from p(6,[0;", 65, ..., 67, »);

Sample 0, *! from p(6,|67*/, ..., 6,*], )

As a good tool for those who want to be deeply
engaged in Gibbs sampling we recommend two
Fortran programs described in Reinsch (1996)
and for the theoretical background to Gamerman
(1997).

Results of some methods of variance component
estimation

Results of the methods ANOVA, QML, REML
and MINQUE could be obtained via the SPSS
menu

Analyze

General linear model
Variance components
and then selecting the methods by the button “op-
tions”.

Federer’s method was not used because it assumes
balanced data which need not really occur in animal
breeding. MIVQUE was calculated by SAS.

The results of the methods applied to our gener-
ated data set are shown in Table 6.

The methods differ only slightly from each other.
By all methods the variance component between
the sires is a little bit overestimated while the re-
sidual variance component is a bit underestimated.
The total variance (known to be 7) is estimated
quite well by all methods. And all methods seem
to work quite well in unbalanced one-way ANOVA
models. But this may be quite different for higher
classifications and covariates in the models.

Such conclusions can be drawn only if we apply
the different methods to a data set for which the
parameters are known like in our simulated data.
Otherwise we can only see differences between
the methods but we do not know which of them
is good.

Table 6. Estimates of the variance components from the data set by different methods

Method Estimate of 62 Estimate of 6> Total variance
ANOVA 1.060 5.894 6.954
QML 1.071 5.896 6.967
REML 1.084 5.896 6.980
MINQUE 1.096 5.895 6.991
MIVQUE 1.027 5.927 6.954
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