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Research on QTL mapping in dairy cattle breed-
ing during the last decade has yielded a steadily 
growing success as Khatkar et al. (2004) showed in 
their review and meta analysis. This is true of adapt-
ing and developing new approaches and describing 
statistical-genetic tools for data analyses. However, 
the way from coarse QTL mapping to finally find-
ing the causative gene is still a challenge. The more 
information is available in the pedigree, the better 
the results of QTL estimation, mainly in terms of 
precision of the QTL position. The ability to cope 
with different characteristics is of vital importance 
for adapting the right tool. Known simulation stud-
ies based on an ideal and well-defined family design 
with evenly spaced markers (e.g. Sørensen et al., 
2003) are efficient for testing the methods in most 

cases, but they do not usually fit practical condi-
tions. Data structure is important for a successful 
fine mapping study. As Lee and van der Werf (2004) 
reported on the basis of a simulation study, a de-
sign including many families of small size yielded a 
higher mapping resolution than a design with few 
families of large size. They showed that the differ-
ence was small in half sib designs and concluded 
that half sib designs might have sufficient informa-
tion for fine mapping of QTL. Using fine mapping 
strategies based on combining linkage (LA) and 
linkage disequilibrium (LD) analysis that promise 
more powerful and precise QTL estimation within 
an interval of less than 5 cM, is becoming a focus 
of current research (e.g. Meuwissen et al., 2002). 
Such an approach uses information on the popula-
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tion history along with pedigree and marker infor-
mation. However, there is still a need to compare 
different methods with respect to specific practical 
conditions, e.g. how they deal with various com-
plexity of a pedigree, inbreeding, missing marker 
and/or pedigree information, etc. So far we have 
not found any reports on approaches to QTL map-
ping that manage inbreeding. 

In this study, we compare a traditional grand-
daughter design (GDD) with a general pedigree 
design (GPD) and assess the precision and power 
of both methods for detecting and locating QTL in 
simulated complex pedigrees. We focused on data-
sets reflecting practical conditions, which is usually 
neglected in simulation studies. We assumed a real 
dataset with various family structures, including 
inbreeding, size of datasets, overlapping genera-
tions, marker maps and missing marker informa-
tion. Contemplating these aspects is a prerequisite 
for successful use of statistical-genetic approaches 
to QTL estimation under practical conditions.

MATERIAL AND METHODS

Data. We simulated several datasets that were 
different regarding size, family structure and length 
of the examined chromosomal segment (54 and 
120 cM). We applied six different marker maps 
containing 11 unevenly distributed, moderately 
informative markers (Table 1). We also analyzed 
full marker information and different amounts of 
missing marker information (up to 30% random 
missing marker information). In GPD analysis, 
marker information was missing consequently for 
about 50% of dams. 

The simulations were conducted using the ap-
proach described by Schelling et al. (1998). Basically, 
the pedigrees included ordered and overlapping 
generations, as we are usually confronted with in 
real dairy cattle breeding. Pedigree information was 
available for final offspring, sires, and two genera-
tions of their male ancestors, but was incomplete 
for dams. Phenotypic records were available for fi-
nal offspring, sires and some of the dams. Maternal 
half sibs occurred in addition to design-dominating 
paternal half sibs. The families originated from two 
great-grand sires (GGS) that were assumed unre-
lated (Figure 1). We investigated different sizes of 
datasets with 
– 200 individuals, 6 sires and 105 final offspring in 

ordered generations (family structure 0)
– 448 individuals, 6 sires and 240 final offspring 

in ordered generations, with inbreeding (half sib 
mating, family structure 0)

– 519 individuals, 9 sires and 283 final offspring in 
overlapping generations

– 850 individuals, 9 sires and 552 final offspring 
in overlapping generations, with and without in-
breeding 

– 1 155 individuals, 9 sires and 608 final offspring 
in overlapping generations 

– 1 352 individuals, 9 sires and 1 046 final offspring 
in overlapping generations with and without in-
breeding. 
Only family structure 0 had a simple (ordered) 

generation structure. All other structures were 
more complicated with overlapping across gen-
erations.

For the purpose of this paper, we present the re-
sults of simulations based on a rather large QTL 
effect, contributing 60% to the variance, whereas 

Table 1. Marker maps used in analyses: marker maps M1 to M4 cover 54 cM, marker maps M5 and M6 cover 
120 cM. All maps include 11 markers (marker 1, 4 and 9 with four alleles, others with three alleles). Maps differ 
regarding the marker position and marker bracket containing the QTL. One single QTL is placed in the middle of 
the markers in bold script

Marker map Map length (cM) Marker position (cM) marker 1, marker 2, .., marker 11

M1 55 0, 13.7, 32.8, 35.7, 40.5, 42.5, 43.5, 44.5, 45.5, 48.5, 53.2

M2 55 0, 10.9, 17.8, 25.9, 33.6, 39.8, 46.3, 48.3, 49.3, 51.2, 54.4

M3 55 0, 13.7, 32.8, 35.5, 37.5, 39.3, 40.3 42.4, 43.3, 44.3, 48.4

M4 55 0, 13.7, 32.8, 35.7, 37.7, 39.7, 43.5, 44.5, 45.5, 46.5, 49.4

M5 120 0, 11, 22, 33, 44, 55, 67, 78, 89, 110, 121

M6 120 0, 18, 36, 44, 52, 55, 57, 63, 78, 93, 111
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the proportions of polygenic and residual variance 
were 30 and 10%, respectively. This enabled us to 
clearly show different effects of applying GPD and 
GDD to various family settings on the particular 
results. 

Analysis methods. The data was analyzed using 
a random model variance component approach. 
The QTL effect associated with each individual 
phenotype at a given genome position was as-
sumed random, based on the variance-covariance 
structure which was the function of the propor-
tion of identical-by-descent (IBD) alleles that two 
individuals shared at the QTL location. Therefore, 
the phenotypes of two individuals would be more 
similar if they shared a greater proportion of alleles 
inherited from the common ancestor at a locus af-
fecting the trait. 

Estimating the proportion of IBD alleles at the 
QTL position is one of the major issues in the ap-
plication of the random model approach. The size 
of animal pedigrees (several thousand individuals) 
and complex relationships (sires mated to a large 
number of dams, dams mated to different sires) 
pose limitations on usability of standard software 
packages for calculation of IBD probabilities. To 
overcome this obstacle, Pong-Wong et al. (2001) 
developed a simple, rapid deterministic method 
to calculate IBD probabilities in large animal pedi-
grees. In order to avoid complicated calculations 
and integration over all possible phases in the en-

tire pedigree when the haplotype phases are not 
known, the haplotype probabilities were calculated 
using the closest informative (phase known) marker 
bracket. Markers that were not informative (miss-
ing, homozygous, impossible to determine phases) 
were skipped.

In order to take full advantage of the recursive 
method, at least three generations in the pedigree 
must be genotyped because the “phase-known 
marker” means that it must be possible to deter-
mine the grandparental origin of marker alleles in 
the individual. To avoid the loss of information for 
individuals that were e.g. offspring of base animals, 
a method used to determine IBD probabilities in 
sibs (Knott and Haley, 1998) was used to deter-
mine IBD probabilities among sibs’ gametes. An 
enhanced version of the algorithm (Vukasinovic 
and Martinez, 2002) used the same methodology. 
In addition, the (half ) sib method was applied to 
the offspring of base individuals and to all full and 
half sib families for which the average number of 
informative markers (across both maternal and pa-
ternal gametes) in the family usable by the recur-
sive method was smaller than the average number 
of informative markers usable by the (half ) sib 
method. The loss of information, for example if a 
large proportion of marker genotypes was missing 
in grandparents, was prevented in this way.

Initially, the IBD probabilities were calculated 
for each pair of gametes independently to obtain 
matrix G of gametic IBD probabilities. Then, ma-
trix Q (“IBD relationship matrix”) containing IBD 
probabilities at the individual’s level was obtained 
by joining together IBD probabilities of the pater-
nal and maternal gametes for each individual by a 
linear transformation of the G matrix.

The following mixed animal model was used in 
our variance component analysis:

y = Xβ + Za + Zq + e 

where:  y  = the (n × 1) vector of phenotypes
 X  = the (n × s) design matrix
 Z  = the (n × n0) incidence matrix relating animals 

to phenotypes 
 β  = the (s × 1) vector of fixed effects
 a  = the (n0 × 1) vector of random polygenic effects
 q  = the (n0 × 1) vector of random QTL effects
 e  = the (n × 1) residual vector

In our analyses, n refers to the number of ani-
mals with phenotypes and n0 to the total number 

Figure 1. Basic family structure 0 (denoted by solid 
arrows) and resulting family structures 1, 2 and 3 for the 
datasets including a given number of final offspring (off ) 
based on a sample size of 850 individuals. Shown are 
two great-grand-sire families (GGS 1 and GGS 2), 
descending grand sires and grand dam (GS7 to GS10 and 
GD), and sires (S). Sire 1 is great-grandsire with own 
final offspring. Structure 1, Structure 2 and Structure 3 
differed by one path only (pattern of the arrow) 
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of animals in the pedigree. X was equal to 1 be-
cause all phenotypes were assumed pre-adjusted 
for non-genetic effects, and thus s = 1 and β = µ. 
The random genetic effects a and q were assumed 
to follow a normal distribution with mean zero and 
variances Aσ2

a and Qσ2
q, respectively. Matrix A was 

the standard additive relationship matrix. Matrix Q 
was the QTL relationship matrix, obtained as de-
scribed above. The model was fitted for each po-
sition on the chromosome. The REML procedure 
implemented in the ASREML software (Gilmour 
et al., 2002) was used to maximize the likelihood 
for each testing position. 

The GDD analysis was based on the same prin-
ciples regarding the statistical model and variance 
component estimation. In the GDD analysis, how-
ever, IBD probabilities were calculated within each 
grandsire family independently, thereby ignoring 
“higher level” relationships among animals. Details 
regarding GDD analysis are described in Freyer et 
al. (2003).

Evaluation of results. The likelihood ratio (LR) 
test statistic was calculated as twice the difference 
between log likelihoods of the full model and the 
model without the QTL effect. The position with 
the highest LR statistic was declared the most likely 
position of the QTL resulting from the particular 
analysis. The estimates for QTL, polygenic, and 
total variance, and corresponding heritability at 
the most likely position were considered MLE for 
these parameters.

To obtain 95% confidence intervals (CI(95%)) for 
QTL position estimates, we used the bootstrap-
ping method (via QTL express for GDD, from  
http://qtl.cap.ed.ac.uk/). We further applied the 
method by Darvasi and Soller (1997) for calculat-
ing the CI(95%) in cases of saturated marker maps, 
where it might be justified. 

RESULTS AND DISCUSSION

Our focus was on comparing results from GDD 
and GPD under practical conditions with varying 
generation and family structures, comparing dif-
ferent sizes of datasets, and varying marker density 
and maps assuming a constrained budget for geno-
typing 11 markers, respectively. We abstain from 
presenting results of different sizes of simulated 
QTL effects because they persistently yielded the 
same shape of the test statistic profile, at least from 
the GDD analysis, with exactly the same peaks in-

dicating the same estimated QTL position, when 
comparing 10, 25, 40 or 60% variance contributed 
by the QTL. Obviously, the levels of the test statis-
tics which reflect the power of the design increased 
with increasing QTL variance, which was consist-
ent with previous simulation studies (e.g. Mayer 
et al., 2004). The variance components estimated 
by GPD were much smaller than those obtained by 
GDD, but this did not cause a deterioration of the 
QTL position estimate (Table 2). 

In most of the relevant cases, both the GDD 
analysis and the GPD analysis were able to locate 
the right QTL region within the confidence interval 
95% and at a chromosome wise significance level 
of P < 0.01 (Table 2, datasets A, B, C, D, E, F, J). 
The main prerequisite for this was the “right pat-
tern” of the marker map. Maps with more dense 
markers around the true QTL position (M1, M4, 
M6) were superior, regarding estimates of QTL 
position, to maps with evenly spaced markers. We 
analyzed datasets based on various marker maps, 
being slightly different at some marker positions, 
mainly mimicking a fine mapping like structure in 
order to investigate the impact of different marker 
positions and distances on the estimated QTL posi-
tion within a 54 cM chromosomal segment (M1 to 
M4). This mimicked the situation that a QTL was 
suggested by a previous analysis using a coarse map 
and then trying to get closer to the position with 
varying marker constellations. Out of those four 
maps, only marker map M2 was not a sufficient 
precondition for the successful QTL estimation, 
even in very large data sets (dataset K, Table 2). 
Both GDD and GPD analyses yielded the highest 
MLE at 34 and 35 cM, respectively, whereas the true 
QTL position was 41 cM. The bootstrap CI(95%) 
was 54 cM, i.e. it covered the entire chromosomal 
segment. We analyzed dataset K additionally by 
QTL Express, obtaining the only insignificant result 
for the estimated QTL position within this group 
of marker maps. The density of markers around the 
actual QTL position (between markers 6 and 7) in 
M2 was not as high as for the other marker maps 
(i.e. M1 to M3 in Table 1). Conclusions from such 
comparisons are of vital importance for preparing 
fine mapping analyses. Marker maps M5 and M6 
were related to a 120 cM chromosome, containing 
11 markers as before. Results from analyses based 
on M5 and M6 showed that with M6 we were able 
to locate the correct QTL region. Using map M5 
in a GDD analysis, we found two peaks with a gap 
around the true QTL position, and the CI(95%) 
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did not cover one of them (results not shown in 
detail). An evenly spaced coarse map such as M5 
is not apparently useful for fine mapping analyses. 
M6 was very useful in GDD with missing marker 
information. The simulated QTL region was found 
exactly at 56 cM with an extremely steep peak of 
the test statistic profile for family structure 3, 
and at 57 cM for family structure 2, respectively 
(Table 2). Compared to the short maps, M6 covers 
more than the double chromosomal length with the 
same number of markers. This result indicates that 
GDD-based linkage analysis can precisely locate 
QTL even with relatively sparse maps, based on 
large and informative offspring groups.

Comparing the sizes of the datasets, we obtained 
a more precise position estimate with large datasets 
from GDD analyses (dataset G, L), and with me-
dium sized datasets from GPD analyses (datasets 
B and F in Table 2). Regarding the power of QTL 
detection, the GPD analysis was always superior to 

the GDD analysis, as it can be seen from the test 
statistic levels (Figure 2). This was not surprising 
because of the tremendous addition of pedigree 
information used in GPD in contrast to GDD. The 
advantage of GPD was especially visible in small 
datasets (Figure 2, datasets A and B). This is shown 
by a sharper peak of the test statistic profile, a more 
precise QTL position estimate, and a shorter con-
fidence interval in several cases (datasets B, D, J, 
Table 2). Additionally, GPD shows sufficient ro-
bustness against missing marker information in a 
small dataset, as obtained from dataset B (Figure 2). 
Analyzing the same dataset by GDD led to a dis-
tance of 3 cM between simulated and estimated 
QTL position. In cases of higher numbers of in-
dividuals involved, the CI(95%) obtained from the 
GDD was shorter than those from GPD (Table 2, 
datasets C and D). 

The size of the CI(95%) serves as an important 
criterion in QTL estimation, in addition to the cor-

Table 2. Characteristics of the datasets, estimated map positions of QTL, confidence intervals CI(95%) based on 
Darvasi and Soller (1997) and relative QTL variance estimates from analyses of GDD and GPD

Data-
set

Data characteristics Analysis results

sample 
size

marker 
map

family structure, 
missing marker 

 inf.

estimated 
QTL

position 
(cM)

confidence interval  
   CI(95%)  (cM)

relative QTL variance 
component estimated by 

GDD and GPD†GDD GPD GDD GPD

A 200 M1 0, no 43 43 12 7 0.63 and 0.42

B 519 M1 1, yes 44 41* 4 3 0.83 and 0.50

C 1 155 M1 1, no 43 38 2 3 0.95 and 0.11

D 850 M1 1, no 43 42 2 6 0.64 and 0.14

E 519 M3 1, no 42* 42* 4 5 0.38 and 0.28

F 850 M4 1, no 42* 42* 3 5 0.48 and 0.18

H 448 M1 0, no 43 38 5 8 0.71 and 0.23

J 850 M1 3, yes 36 42 [36–44]a 0.62 and 0.15

K 1 352 M2 1, yes 34b 35b [0–54]a 0.42 and 0.11

I 850 M4 1, yes 43 23 [38–45]a 0.48 and 0.21

G 1 352 M6 2, yes 57* 51 [49–53]a,c 0.64 and 0.55

L 1 352 M6 3, yes 56* 45 [48–52]a,c 0.92 and 0.13

†true QTL variance was 60% of the total phenotypic variance; *indicates that the correct map position was found within a 
region of  ± 1 cM
a[ ] indicates the bootstrap CI(95%) because the formula by Darvasi and Soller (1997) is not suited here for at least one of 
both analyses
bresults were not significant due to the F-test after permutation (not shown in detail), whereas all others were significant
at P < 0.01
cthe bootstrap CI(95%) did not contain the actual simulated QTL
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rectly estimated QTL position. Because we used 
both saturated and relatively sparse marker maps, 
we could not rely in general on calculated CI(95%) 
as suggested by Davarsi and Soller (1997). When 
the QTL region was estimated correctly using a 
saturated marker map, the CI(95%) was reliable 
and in agreement with the confidence intervals 
obtained by bootstrapping in GDD analysis (for 
datasets A, B, C, D, E, F, J in Table 2). 

Overlapping generations (Figure 1) did not cause 
any problems compared to ordered generations. 
But in family structure 2, when grand dam GD 12, 
a daughter of sire 2, was used to produce one half 
of the sires in family 1, compared to one quarter 
in structure 2 (Figure 1), we apparently got a bias 
in QTL position estimates obtained from the GPD 
analysis (e.g. dataset G, Table 2). The GDD analy-
sis of family structure 2 led to an almost correct 
estimate of the QTL position, 1 cM apart from the 
simulated QTL position from dataset G (Table 2). 
The same result was obtained from structure 3, 
when the pedigree was based on close inbreeding 
(dataset L in Table 2). Actually, inbreeding did not 
affect the GDD analysis, but it did affect the GPD 
analysis. The correctness of results (from datasets 
with inbreeding) by GDD and GPD analyses var-

ied a lot when based on smaller datasets and short 
marker maps (e.g. datasets F and J in Table 2). 

It might be assumed that a nested pedigree struc-
ture, as shown by family structures 2 and 3, where 
we have in principle one big family instead of two 
independent great grandsire families, should in-
crease the information content leading to more 
precise estimates of the QTL position. But this 
was not the case when inbreeding was included 
(structure 3). GPD analysis of large datasets with 
nested family structures seems to be inferior to 
GDD analysis with respect to the correctness of 
estimated QTL positions (datasets G and L, see 
Figure 3). The reason could be difficulties of the 
algorithm when handling large data sets and com-
plicated family structures, which makes the ma-
trix of IBD probabilities numerically unstable and 
causes problems in convergence. Another critical 
point could be the estimated QTL variance, being 
too small in all considered GPD analyses (Table 2). 
Family structures, as designed in Figure 1, are quite 
common within practical dairy cattle breeding and 
have to be investigated further in order to make 
the algorithm more effective. At the present time, 
the combined analysis based on LA and LD seems 
to be the method of choice (e.g. Meuwissen et al., 
2002). Lee and van der Werf (2004) found that the 

Figure 2. Comparison of test statistic profiles between analyses of granddaughter design (GDD) and general (or 
full) pedigree design (GPD or FPD) within four different datasets differing in pedigree size, family structure and 
marker information. The analyses were based on marker map M1 harbouring one QTL at 41 cM
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superiority of the combined LA/LD analysis over 
linkage analysis was minor in datasets with few 
families of large sizes, as we investigated here in 
accordance with most of the international studies. 
The design of our simulated datasets, nine sires 
originating from two great grand sire families based 
on structure 1, is representative for the QTL ex-
periments in dairy cattle breeding reported in the 
international literature so far. 

CONCLUSIONS

We used simulated datasets based on family struc-
tures taken from real cattle breeding incorporating 
fine mapping like marker maps and treated them as 
unique real datasets in our GDD and GPD analyses of 
QTL mapping. Both the GDD analysis and the GPD 
analysis were able to find the QTL region within
relatively small CI(95%) when analyzing more com-
plicated family structures and using proper marker 
maps. This could also be shown by results from me-
dium sized datasets with overlapping generations 
and missing marker information. Due to the addi-
tional amount of pedigree information, analyzing 
data by GPD is more powerful than by GDD in gen-
eral. The GDD analysis was superior in terms of preci-
sion of QTL position estimates when analyzing large 
offspring groups. Further, GDD analysis was more 
successful with large offspring groups in combina-
tion with fine mapping like marker maps covering

the whole chromosome instead of a chromosomal 
region. It can be concluded that it is not necessary 
to increase the number of markers to obtain reliable 
estimates of the QTL region, when the right pattern 
of marker map is used. The GPD is probably a suffi-
cient tool for QTL estimation in medium sized pedi-
grees. It is likely much more efficient to use more
information on ancestral generations and to spend 
genotyping efforts for smaller offspring groups. The
GPD methodology should be investigated further 
for efficient processing of inbreeding information.
Further research is also required in order to cope with 
inbreeding and large datasets simultaneously. 
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