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Interest in the modelling of animal growth is 
caused, besides interest in studying the biological 
phenomena themselves, by important economic 
implications growth has for animal breeders. A fit-
ting model gives an opportunity to summarize im-
portant growth characteristics (such as growth rate, 
earliness, daily gain, food conversion, mature body 
size and weight, length of the time interval between 
birth and maturity) into just a few model param-
eters. These parameters can be used as a base of
selection (e.g. Beltran, 1992; Mignon-Grasteau et al., 
2000). Statistical analysis can also identify relations 
between growth curve parameters and important 
production and reproduction traits (e.g. de Torre 
et al., 1992; Menchaca et al., 1996; Hyánková et al., 
2001). Frequently used are also allometric mod-
els (e.g. Zeger et al., 1987; Koops and Grossman, 
1991b).

Classical growth models1 assume that the postna-
tal growth rate monotonically increases until certain 
age when it reaches maximum and then it monotoni-
cally decreases and (asymptotically) reaches zero. 
The corresponding growth curve is a smooth mo-

notonic sigmoidal curve with one inflection point
(which corresponds to the maximum growth rate 
age) and an asymptote. The growth model often de-
scribes a relation between live weight of an animal 
y and its age t. Then the asymptote of the growth
curve is usually interpreted as the final weight of
an adult animal.

Observed growth data may reveal in some cases 
that the real growth is a more complex process than 
the above-mentioned classical model assumes. The
growth data on Czech Pied breeding bulls in Figure 
1 indicate that a multiphasic growth model with two 
classical phases could fit the data better than the classi-
cal one. Multiphasic growth models were proposed by 
Koops (1986) and since that time multiphasic growth 
was examined in several species (chicken – Koops 
and Grossman, 1988; mouse – Koops et al., 1987; 
Kurnianto et al., 1999; Koops and Grossman, 1991a,b; 
pig – Koops and Grossman, 1991c; Japanese quail 
– Knížetová et al., 1995; allometric relations in rab-
bits, fish and chicken – Koops and Grossman, 1993); 
for related papers see also Hyánek and Hyánková, 
1995; Nešetřilová, 1998).
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ABSTRACT: There are several ways of generalizing classical growth models to describe the complex nature of 
animal growth. One possibility is to construct a model based on a sum of several classical growth functions. In 
this paper, such multiphasic growth models for breeding bulls of the Czech Pied cattle based on the sum of two 
logistic functions are studied. The logistic function was chosen as a base for the models due to the relatively low 
degree of nonlinearity for the growth data. The paper describes three steps of constructing such a multiphasic 
growth model: in the first step a model with four unknown parameters is considered, in the second step the 
number of model parameters which are to be estimated is increased to five and in the third step a general model 
with six parameters is used. In each step, statistical properties of the considered model are checked. The residual 
variability of the best fitting model is on average approx. 8 times lower than the residual variability of classical 
Gompertz model which is often used by breeders to model cattle growth.
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1See Zeger and Harlow (1987) for an overview of growth models.
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METHOD

For the purpose of the study, data on body weight 
of 101 breeding bulls of the Czech Pied cattle were 
collected. Body weight was recorded from approx. 
30 days up to (max.) 1 400 days of age. The weigh-
ing interval was approx. 30 days, nevertheless it 
differed individually. 

The observed growth data (Figure 1) suggest that 
a suitable multiphasic growth model could be con-
structed either as a sum of two classical growth 
functions or as a change point model. In this paper, 
the first approach was considered and the mean 
body weight of individual bulls was modelled as a 
sum of two growth functions (corresponding to two 
“classical” growth phases). As possible candidates 
for the construction of such a multiphasic model 
were considered the following functions (which are 
used as the “classical” growth models):

Logistic

y =              α (1) 
       1 + exp (β – γt)

Gompertz 

y = α exp(–exp (β – γt))  (2)

Richards 

y = α (1 + exp (β – γt))–1/δ  (3)

Morgan – Mercer – Flodin

y =  
βγ + αtδ

  (4) 
        γ + tδ

Weibull type

y = α – β exp(–γtδ)  (5) 

Among those models, Gompertz and Richards 
functions have often been used for cattle growth 
modelling. 

Nešetřilová (2001) compared statistical prop-
erties of functions (1) to (5) in classical models 
of growth data on the Czech Pied breeding bulls. 
Based on this study, two functions were considered 
for the construction of the multiphasic model, lo-
gistic and Gompertz. Especially the logistic func-
tion seemed to be a reasonable choice because of 
the low degree of nonlinearity. In this paper, the 
growth model based on the sum of two logistic 
functions is considered. For the model based on 
the sum of two Gompertz functions see Nešetřilová 
(2004).

The growth model which is a sum of two logis-
tic functions has, in general, six parameters which 
have to be estimated from data. As the number of 
parameters was considered too high and as there 
were some indications that parameter β could be 
the same for both growth phases, the growth model 
was constructed in three steps.

In the first step the assumption was made that  
β1 = β2 (= β) and moreover its value was set fixed for 
each animal. (This step was considered as prepara-
tory and its purpose was to help set initial values for 
estimates in the second step.) This growth model 
referred to as LOGISTIC 4 had four parameters 
which were estimated from the observed data, 

y =             
α1                +          

α2   
      1 + exp (βfix – γ1t)       1 + exp (βfix – γ2t) 
  (LOGISTIC 4)

where:  βfix = the fixed numerical constant2

 α1, α2 , γ1, γ2  = model parameters

In the second step, β was considered to be an 
unknown parameter and thus the corresponding 
model LOGISTIC 5 had five parameters α1, α2, β, 
γ1, γ2

y =             
α1              

+
          α2   

       1 + exp (β – γ1t)       1 + exp (β – γ2t) 
 (LOGISTIC 5)

The most general model was LOGISTIC 6 with 
six parameters α1, α2, β1, β2, γ1, γ2

y =            
 α1                +          

 α2   
       1 + exp (β1 – γ1t)        1 + exp (β2 – γ2t) 
 (LOGISTIC 6)

In these models α1 (α2) represents the asymptote 
of the first (second) growth phase, γ1 (γ2) growth 
rate in the first (second) growth phase and α1 + α2 
is the asymptote of the resulting growth curve 
(lim y(t) = α1 + α2). Parameters β (β1, β2) have no 
straightforward biological interpretation. 

Considered models are nonlinear regression 
models, thus their properties can be studied only 
in combination with data sets for which they are 
used. This is caused by the fact that the regression 

2Choice of β was based on the fact that

β = ln ( 
α1 + α2  

– 1) 

                y(0)
where: y(0) = the birth body weight 

t →∞
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response surface can have different properties for 
different data sets (see Ratkowsky, 1983). 

Two criterions were used to evaluate the good-
ness-of-fit of a growth model. The first criterion 
was residual variability measured by residual vari-
ance s2

s2 =      
 S 

        
n – p

where: S = S(
∧

ϑ) = the residual sum of squares of the parameter 
            vector estimate, 

∧

ϑ = (∧α1, ∧α2, ∧γ1, ∧γ2) and/or   
  

∧

ϑ = (∧α1, 
∧α2,  

∧

β1, ∧γ1, ∧γ2) or  
∧

ϑ = (∧α1, 
∧α2, 

∧

β1, 
∧

β2, ∧γ1, ∧γ2)
 n  = denotes the number of observations
 p  = the number of model parameters ;  (s2 was 
     preferred to S due to the unequal number 
     of observations on individual animals) 

The second criterion was the degree of “non-
linearity” for a specific model/data combination 
because regression models with a low degree of 
nonlinear behaviour have preferable statistical 
properties3 (see Ratkowsky, 1983). 

Nonlinearity of a model can be separated into two 
components: intrinsic nonlinearity (associated with 
geometric properties of the solution locus, with 
its curvature) and parameter-effects nonlinearity 
(associated with parametrisation of the model)4. 
It is strongly recommended to use close-to-linear 
models which have both the low intrinsic nonlin-
earity and low parameter-effects nonlinearity (for 
details see Ratkowsky, 1983; Zvára, 1989). 

RESULTS AND DISCUSSION

The model LOGISTIC 4 (fixed β) was considered 
only as a preparatory step for the subsequent con-
struction of more complex models. It helped to set 
initial estimates of parameters of the more com-
plex model LOGISTIC 5 (β estimated parameter). 
Convergence to the final estimates was fast, also 
due to the relatively low5 degree of nonlinearity of 
logistic models for the bull data (Tables 4 and 5). 
Table 1 summarizes residual sums of squares S and 
residual variances s2 for bulls6 from the considered 
group with maximum number of weight determi-
nations n. In the model LOGISTIC 6 (generally 
β1 ≠ β2) residual variability, measured by the re-
sidual sum of squares S, further decreased. The 
decrease in residual variability was marked in some 

3Nonlinear regression models differ from linear regression models in this way: when the assumption of inde-
pendent and identically distributed normal random errors is made, the least-squares estimators of linear 
model parameters are generally unbiased, normally distributed and have minimum variance while in the 
case of nonlinear models the least-squares estimators have these properties only asymptotically. Thus, the
estimators are generally biased and their properties (in case of a finite sample) are not known. The extent
to which a nonlinear model differs from a linear one (bias, degree of nonnormality, increase of  estimator
variability) can vary greatly for different nonlinear model/data combinations. Thus it is not possible to give a 
general recommendation as to how large the sample size must be so that the properties of a model are close 
to its asymptotic behaviour. Further, magnitude of an estimator bias and increase of the estimator variability 
are related to the degree of the “nonlinearity” of its distribution. Besides the advantages mentioned above 
(close-to-asymptotic behaviour), predicted response values y will have only a small bias and computational 
complexity and problem of the initial estimates of the parameter vector will also decrease. 

4Intrinsic nonlinearity has an impact on the extent of bias of y predictions while parameter-effects nonlinearity may
negatively influence the convergence to the least-square estimates of the model parameters. Parameter-effects
nonlinearity may sometimes be decreased by suitable reparametrization of a model while intrinsic nonlinearity 
does not depend on parametrization. 

5Degree of nonlinearity is considered low if it is bellow (F0.95(p, n – p))–1/2 (Tables 4–6).
6All models were constructed for individual animals. 
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Figure 1. Data on the growth of Czech Pied cattle breed-
ing bulls (example of individual growth)
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Table 1. Residual sum of squares S, residual variance s2 and number of observations n for individual growth curves 
in models LOGISTIC4 – LOGISTIC 6

Model LOGISTIC 4 LOGISTIC 5 LOGISTIC 6

Bull No. n S s2 S s2 S s2

1 28 2 768.67 115.36 1 910.87 83.08 1 901.29 86.42

2 26 3 699.60 168.16 3 032.28 144.39 1 535.16 76.76

3 32 4 791.18 171.11 4 469.94 165.55 2 388.79 91.88

4 32 6 563.31 234.40 3 742.67 138.62 3 382.83 130.11

5 32 13 199.93 471.43 4 910.81 181.88 4 863.76 187.07

6 26 3 215.13 146.14 3 192.24 152.01 3 186.29 159.31

7 25 3 766.67 179.37 1 570.39 78.52 1 262.94 66.47

8 27 2 380.48 103.50 2 330.78 105.94 2 272.14 108.20

Table 2. Parameter estimates and their asymptotic standard errors of the model LOGISTIC 4 (fixed β)

Bull No.
Parameter α1 Parameter α2 Fixed β

Parameter γ1 Parameter γ2

estimate ASE* estimate ASE* estimate ASE* estimate ASE*

1 384.553 11.364 705.665 37.776 3.055 0.01221 0.00033 0.00306 0.00016

2 332.079 12.860 692.543 13.711 3.106 0.01600 0.00056 0.00432 0.00012

3 314.477 16.502 623.625 17.342 2.944 0.01367 0.00057 0.00403 0.00017

4 303.255 13.538 789.670 14.210 3.066 0.01630 0.00069 0.00445 0.00011

5 341.826 18.803 642.274 20.814 3.229 0.01617 0.00082 0.00441 0.00018

6 296.640 14.454 699.899 13.956 2.944 0.01405 0.00058 0.00390 0.00011

7 309.308 9.008 735.177 38.382 3.001 0.01751 0.00068 0.00327 0.00016

8 392.951 13.367 570.090 13.750 2.890 0.01280 0.00034 0.00374 0.00014

*asymptotic standard error

Table 3. Parameter estimates and their asymptotic standard errors of the model LOGISTIC 5 (estimate β)

Bull No.
Parameter α1 Parameter α2 Parameter β Parameter γ1 Parameter γ2

estimate ASE* estimate ASE* estimate ASE* estimate ASE* estimate ASE*

1 373.184 11.876 709.692 31.572 2.883 0.052 0.01142 0.00038 0.00296 0.00014

2 323.963 14.857 709.412 16.066 2.906 0.087 0.01455 0.00085 0.00406 0.00016

3 306.640 18.801 637.842 20.572 2.815 0.089 0.01292 0.00082 0.00386 0.00022

4 280.949 15.934 829.902 15.917 2.724 0.069 0.01357 0.00081 0.00340 0.00013

5 328.209 20.965 703.299 20.256 2.624 0.075 0.01169 0.00074 0.00349 0.00018

6 294.427 16.227 703.920 17.680 2.905 0.102 0.01379 0.00090 0.00386 0.00017

7 287.769 8.864 792.407 34.367 2.672 0.057 0.01497 0.00063 0.00287 0.00013

8 394.642 13.011 566.179 14.649 2.943 0.078 0.01309 0.00057 0.00380 0.00017

*asymptotic standard error
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animals but in others it was only so slight that the 
residual variance s2, which penalizes the model for 
the number of parameters, increased. The com-
parison of models LOGISTIC 5 and LOGISTIC 6 
indicates that for some animals the parameter β 
might be the same for both growth phases but for 
others it is not true. 

Point estimates of model parameters and their 
precision (characterised by asymptotic standard 
errors) for models LOGISTIC 4–LOGISTIC 6 are 
given in Tables 2–4. As expected, the precision of 
estimation decreased with the number of param-
eters of the model but the drop was not fatal. This 
fact is related to the increase of nonlinearity (see 
below). The shape of growth curves LOGISTIC 5 
and LOGISTIC 6 and their correspondence to data 
can be visually inspected in Figure 2. 

The second criterion to evaluate the goodness-
of-fit was a close-to-linear behaviour of a growth 
model. For its evaluation, measures of nonlinearity 
of considered model/data combinations in mod-
els LOGISTIC 4–LOGISTIC 6 were computed 
(Tables 5–7). Nonlinearity is usually classified as 
high if the maximum of the corresponding measure 
exceeds 

F0.95(p, n – p))–1/2

where: n  = the size of a data sample 
 p  = the number of model parameters (see Zvára, 
     1989, p. 230)

A comparison of the level of nonlinearity in the 
models LOGISTIC 5 and LOGISTIC 6 is interesting 
in this respect. While in the model LOGISTIC 5 the 
intrinsic nonlinearity was low and the parameter-
effects nonlinearity exceeded F0.95(p, n – p))–1/2 only 
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Figure 2. Individual growth modelled by LOGISTIC 5 
and LOGISTIC 6Ta
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Table 5. Degree of nonlinearity of the multiphasic growth model LOGISTIC 4 (fixed β) for data on Czech Pied bulls 

Bull No.
Average curvature Maximum curvature

(F0.95(p, n – p))–1/2

parameter effects intrinsic parameter effects intrinsic

1 0.7707 0.1211 2.1603 0.3218 0.6002

2 0.2067 0.0727 0.4300 0.1770 0.5958

3 0.4175 0.1037 1.0353 0.2729 0.6070

4 0.2113 0.0799 0.4894 0.2026 0.6070

5 0.3160 0.1077 0.6808 0.2673 0.6070

6 0.2667 0.0760 0.6378 0.1978 0.5958

7 0.5942 0.0972 1.6407 0.2359 0.5934

8 0.3167 0.0710 0.8092 0.1830 0.5980

Table 6. Degree of nonlinearity of the multiphasic growth model LOGISTIC 5 (estimate β) for data on Czech Pied 
bulls 

Bull No.
Average curvature Maximum curvature

(F0.95(p, n – p))–1/2

parameter effects intrinsic parameter effects intrinsic

1 0.6651 0.0394 2.2365 0.1176 0.6155

2 0.3010 0.0560 0.8620 0.1782 0.6103

3 0.5100 0.0736 1.5506 0.2394 0.6235

4 0.3032 0.0610 0.9401 0.2019 0.6235

5 0.4762 0.0730 1.3832 0.2367 0.6235

6 0.3243 0.0606 0.9540 0.1980 0.6103

7 0.5760 0.0420 1.9220 0.1332 0.6073

8 0.3298 0.0501 0.9899 0.1538 0.6130

Table 7. Degree of nonlinearity of the multiphasic growth model LOGISTIC 6 (estimate β1, β2) for data on Czech 
Pied bulls 

Bull No.
Average curvature Maximum curvature

(F0.95(p, n – p))–1/2

parameter effects intrinsic parameter effects intrinsic

1 2.1110 0.0974 8.1116 0.3268 0.6263

2 0.5685 0.0672 2.1728 0.2275 0.6203

3 0.7522 0.0884 2.8429 0.3222 0.6356

4 4.2738 0.2219 17.1583 0.8468 0.6356

5 12.4479 0.8538 49.8223 3.4802 0.6356

6 4.9739 0.4821 19.6920 1.9430 0.6203

7 3.5960 0.1620 14.0853 0.6232 0.6169

8 1.6390 0.1107 6.3994 0.3028 0.6234

moderately, the intrinsic nonlinearity in the model 
LOGISTIC 6 was high and parameter-effects non-
linearity exceeded F0.95(p, n – p))–1/2 considerably in 

all cases. The apparent nonlinearity of the model 
LOGISTIC 6 was reflected by increased values of 
the asymptotic standard errors of the parameter 
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estimates (Table 4). Thus, the model LOGISTIC 
5 had better statistical properties than the model 
LOGISTIC 6 but the question if it was accepta-
ble for the observed data was open. To answer it, 
an asymptotic test for testing H0 : β1 = β2 against 
A : β1 ≠ β2 was performed (see Ratkowsky, 1983, 
p. 138). The test, based on the change in the re-
sidual sum of squares between models LOGISTIC 5 
and LOGISTIC 6 for all considered animals, ended 
in rejection of the null hypothesis (α < 0.01). 

Thus the general model LOGISTIC 6 with six 
parameters α1, α2, β1, β2, γ1, γ2 should be considered 
as adequate for the modelling of bull growth. To 
document the improvement of using this model in 
comparison with the classical Gompertz model, the 
residual variability for both models is presented in 
Table 8. For the same growth data, the multiphasic 
growth model LOGISTIC 6 has on average more 
than 8 times lower residual sum of squares than 
the Gompertz model which is often used to model 
cattle growth. 

Efforts to find a growth model which fits the ob-
served data as close as possible are justified by the
fact that parameters of the growth model can be used 
for estimation of breeding value of an animal and 
for subsequent selection. Considering the impact 
breeding bulls have on production and reproduction 
traits in cattle subpopulations, further research on 
more appropriate growth models is desirable. 
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