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In recent years significant reconstructions have 
been done in the programs of genetic improvement 
of farm animals. Although long-term selection for 
the improvement of production traits has reached 
the assumed objectives, it has also contributed to 
the degradation of the so-called functional traits 
(Hansen, 2000). Most production traits are geneti-
cally and phenotypically continuous. For this rea-
son linear models could be successfully used for 
their analysis. However, even though determined 
by the number of loci, some functional traits are 
discontinuous variables. They are called threshold 
traits. Many of them, for instance fertility, hatch-
ability or resistance to certain diseases are binary 
traits.

In order to take into consideration the specific 
character of threshold traits, threshold models are 
used for their analysis (Gianola and Foulley, 1983; 
Harville and Mee, 1984). In these models it is as-
sumed that the phenotypic categorized variability 
of a trait is determined by the values of a certain 
unobserved random continuous variable, called li-
ability. This variable is linked with the limits of cat-

egories (thresholds), i.e. the observation is classified 
on the basis of the phenotype to a given category 
if the value of the unobserved variable exceeds the 
threshold of this category (also unobserved). In 
the hidden scale standard deviation of the unob-
served variable is used as the unit of measurement 
(Falconer, 1989). In the case of two categories it is 
assumed, without the loss of generality, that the 
threshold between these categories lies at point 0 
(Gianola and Foulley, 1983; Misztal et al., 1989).

Threshold models are an effective alternative to 
data transformation. It was shown that the adoption 
of such models gives more accurate estimates of 
genetic parameters (Matos et al., 1997; Abdel-Azim 
and Berger, 1999; Dobek et al., 2003).

Some of the threshold traits have a complex genet-
ic background. They may be determined to a large 
extent by indirect maternal effects, both genetic and 
environmental ones (Sewalem, 1989). In this paper 
we extend a previously described model (Moliński 
et al., 2003) by the genetic maternal and permanent 
environmental effects. We present an algorithm for 
the estimation of genetic parameters in a two-trait 

The study was conducted within the research project of the Commi�ee for Scientific Research (Grant No. 5 P06 
D 02019).

The algorithm of Bayesian estimation of maternal 
genetic and permanent maternal environmental 
variances in a two-trait binary threshold model

E. S���������1, M. S���������2, A. D����1, K. M�������1, T. S�����������2

1Department of Mathematical and Statistical Methods, 2Department of Genetics and Animal 
Breeding, August Cieszkowski Agricultural University of Poznań, Poland

ABSTRACT: The paper presents an algorithm for the estimation and prediction of parameters in a two-trait binary 
threshold model. The model includes fixed effects and the following random effects: genetic direct additive, genetic 
maternal additive and permanent maternal environmental effects. The Gibbs sampling procedure was used to 
estimate the parameters. The algorithm was illustrated with a numerical example showing appropriateness of the 
proposed method.

Keywords: binary traits; genetic effects; Gibbs sampling; threshold model; maternal effects



58

Original Paper                                                                                 Czech J. Anim. Sci., 49, 2004 (2): 58–63

59

Czech J. Anim. Sci., 49, 2004 (2): 58–63                                                                                Original Paper

model when the interesting traits are threshold 
traits with two categories (binary traits).

MODEL

Let us consider the vector of observations y. The 
components of y are taking values 0 or 1. The value 
of y is conditioned by an unobservable vector w 
(liabilities). When w is positive, the phenotypic 
expression y is 1, otherwise it is 0. For the vector w 
we are assuming the following model: 

where: 

and
      w(k)  = the N-vector of the values of the unobserved 
        random variable (liability)
      β(k) = the p-vector of fixed effects
      a(k) = the q-vector of random genetic direct additive
        effects
      m(k)  = the q-vector of random genetic maternal addi-
        tive effects
      c(k) = the v-vector of random permanent maternal
        environmental effects
      e(k) = the N-vector of effects of residuals for the k-th
         trait, k = 1, 2
      I = the identity matrix of a given dimension
      X, Z1, Z2, Z3  = known matrices of corresponding
        dimensions with elements equal to 0 or 1

Further:
n = the number of observed animals

, while ni is the number of observations (equal for 
two traits) for the i-th animal 

q = the number of all the investigated animals
v = the number of dams

For the model parameters the following assump-
tions are adopted:

Moreover:

where:  A = the q x q additive relationship matrix 
   (Quaas, 1976)
 σ2

ak
 = the genetic direct additive variance for

    k-th trait
 σ2

mk
 = the genetic maternal additive variance

   for k-th trait
 σakak’

 = the covariance between direct additive
   effects for k-th and k’-th traits
 σakmk’

 = the covariance between direct and maternal
   additive effects for k-th and k’-th traits
  σmkmk’

 = the covariance between maternal additive
   effects for k-th and k’-th traits
 σ2

ck
  = the permanent maternal environmental

   variance
 k  = 1, 2, k’ = 1, 2

ESTIMATION OF PARAMETERS

Estimators and predictors of unknown model 
parameters may be obtained by Gibbs sampling 
(Sørensen et al., 1995; Moliński et al., 2003). In the 
Gibbs sampling method, the values of the param-
eter are generated from its a posteriori conditional 
distribution, assuming all the other parameters are 
known. The generated values may be treated as a 
sample from corresponding marginal distribution, 
when the condition of the stationarity of the process 
is satisfied. Let us adopt the following assumptions 
concerning the conditional distributions for the pa-
rameters (Sørensen et al., 1995):

wlj
(k)| all the other parameters and ylj

(k) = 1   ~ 

N(xljβ
(k) + z1lj

a(k) + z2lj
m(k) + z3lj

c(k) ; 1)  (le�-truncated)

wlj
(k)| all the other parameters and ylj

(k) = 0   ~ 

N(xljβ
(k) + z1lj

a(k) + z2lj
m(k) + z3lj

c(k) ; 1) (right-truncated)

where:  ylj
(k)  =  the j-th observation of the k-th trait for the

   l-th animal (ylj
(k) = 1 or ylj

(k) = 0) 
xlj, z1lj

, z2lj
, z3lj

  =  the lj-th row of corresponding
   matrices

l = 1, 2, ..., n
j = 1, 2, ..., nl

Let the inverses of Vu and Vc be:

Elements of vectors β, a, m, c are generated from 
normal distributions, the parameters of which are 
determined from the formulas given below:
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i) fixed effects (i = 1, ..., p; k = 1, 2):

ii) genetic direct additive effects (i = 1, ..., q):

iii) genetic maternal additive effects (i = 1, ..., q):

iv) permanent maternal environmental effects (i = 
1, ..., v):

where: Aii = the i-th diagonal element of A–1

            Ai.  = the i-th row vector of A–1

            Ai, –i  = the i-th row vector of A–1 with the i-th ele-
              ment skipped
            a(k)

–i ,  m
(k)
–i = vectors a(k) and m(k) with i-th element

                            removed
            xi, z1i, z2i, z3i = the i-th columns of corresponding
                                   matrices

The distributions for unknown components of 
variance and covariance are as follows:

Vu| all the other parameters ~ IW4[(U
1
A–1U)–1, q]

where: U = [a(1), m(1), a(2), m(2)]
σ2

ck
| all the other parameters ~ 

and IW denotes inverted Wishart distribution

SIMULATION STUDY

Data

The correctness of the proposed algorithm was 
checked through simulation studies. Therefore we 
simulated a female-limited trait for a real pedigree. 
The pedigree was taken from a layer flock and con-
sisted of 9 generations, 6 476 birds, including 5 980 
with known parents, out of which 5 353 were female. 
The distribution of the size of maternal groups is 
given in Figure 1. For each dam two binary traits 
were generated in 30 replications (corresponding to 
the average number of eggs destined for hatching). 
The simulation of data was conducted in two stages. 
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Figure 1. Empirical distribution of the number of offsprings per dam
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In the first stage, elements of vector w were gener-
ated according to the studied model with one fixed 
effect. The assumed true values of the components 
of variance and covariance as well as the levels of 
fixed effect are presented in Table 1. In the second 
stage variables ylj were determined based on the pre-
viously obtained vector w. The true values of the 
parameters used in simulation are given in Table 1.

Results

The stationarity of the process is illustrated by 
random values for direct additive genetic variance 
σ2

a1
 (Figure 2). Similar stationarity of the random 

process was observed for other parameters as well. 
Point estimators and predictors of parameters of the 
model were calculated as averages from 20 000 ran-

dom values coming from each 50-th iterative step. 
The starting values and estimates of parameters are 
presented in Table 1. The obtained results indicate 
the correctness of the method, the estimators of 
parameters are close to the true values.

PRACTICAL IMPLICATIONS

As it was already mentioned, the proposed algo-
rithm exhibits good properties especially concern-
ing the low values of the estimated parameters. 
Roughsedge et al. (2001) reported that the accu-
racy of the estimation of maternal variances was 
positively correlated with the actual value of this 
parameter.

It needs to be mentioned that the satisfactory re-
sults were obtained for the population whose size 

Table 1. The results of simulation studies – estimators of fixed effects and variance and covariance components 

Fixed effect/(co)variance 
component

True value Starting value Estimator (standard deviation)

β(1)
1 0 0 0

β(1)
2 1.0 0 1.0340 (0.0031)

β(2)
1 0 0 0

β(2)
2 0.5 0 0.5010 (0.0035)

σ2
a1

0.3 0.4 0.2999 (0.0089)

σ2
m1

0.03 0.1 0.0419 (0.0093)

σ2
a2

0.4 0.4 0.4262 (0.0122)

σ2
m2

0.04 0.1 0.0423 (0.0109)

σa1a2
0.104 0 0.1081 (0.0075)

σa1m1
–0.019 0 –0.0344 (0.0070)

σa2m2
–0.025 0 –0.0208 (0.009)

σa1m2
0 0 –0.0005 (0.0074)

σa2m1
0 0 –0.0018 (0.0077)

σm1m2
0.00692 0 0.0077 (0.0046)

σ2
c1

0.02 0.1 0.0211 (0.0058)

σ2
c2

0.03 0.1 0.0274 (0.007)  

Note on symbols:

β(k)
1 = the first level of the fixed effect for k-th trait, β(k)

2 = the second level of the fixed effect for k-th trait, σ2
ak

 = the genetic 
direct additive variance for k-th trait, σ2

mk
 = the genetic maternal additive variance for k-th trait, σakak’

 = the covariance 
between direct additive effects for k-th and k’-th traits, σakmk’

 = the covariance between direct and maternal additive 
effects for k-th and k’-th traits, σmkmk’

 = the covariance between maternal additive effects for k-th and k’-th traits, σ2
ck
 = 

the permanent maternal environmental variance, k = 1, 2, k’ = 1, 2
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and structure were not very suitable for the esti-
mation of maternal genetic environmental effects 
(Figure 1). It indicates considerable universality of 
the proposed method. On the other hand, further 
simulation studies are required. They should con-
sider pedigrees of different size and structure.
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Figure 2. The Gibbs sampling process – the first 5 000 samples for the direct additive genetic variance
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ABSTRAKT

Algoritmus Bayesovského odhadu maternálně genetických a permanentních maternálně genetických 
variancí ve dvouznakovém binárním prahovém modelu

V práci je předložen algoritmus pro odhad a předpověď parametrů ve dvouznakovém binárním prahovém modelu. 
Tento model obsahuje pevné efekty a následující náhodné efekty: genetické přímé aditivní, genetické mateřské adi-
tivní a efekty trvalého mateřského prostředí. Pro odhad parametrů byl použit postup Gibbsova výběru. Algoritmus 
byl znázorněn na numerickém příkladě, který prokázal vhodnost navržené metody.

Klíčová slova: binární znaky; genetické efekty; Gibbsův výběr; prahový model; maternální efekty
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